BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 32569518)

  • 21. Mechanistic Insight into the Reactivation of BCAII Enzyme from Denatured and Molten Globule States by Eukaryotic Ribosomes and Domain V rRNAs.
    Chakraborty B; Bhakta S; Sengupta J
    PLoS One; 2016; 11(4):e0153928. PubMed ID: 27099964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Co-translational binding of importins to nascent proteins.
    Seidel M; Romanov N; Obarska-Kosinska A; Becker A; Trevisan Doimo de Azevedo N; Provaznik J; Nagaraja SR; Landry JJM; Benes V; Beck M
    Nat Commun; 2023 Jun; 14(1):3418. PubMed ID: 37296145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chp1 is a dedicated chaperone at the ribosome that safeguards eEF1A biogenesis.
    Minoia M; Quintana-Cordero J; Jetzinger K; Kotan IE; Turnbull KJ; Ciccarelli M; Masser AE; Liebers D; Gouarin E; Czech M; Hauryliuk V; Bukau B; Kramer G; Andréasson C
    Nat Commun; 2024 Feb; 15(1):1382. PubMed ID: 38360885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Principles of cotranslational ubiquitination and quality control at the ribosome.
    Duttler S; Pechmann S; Frydman J
    Mol Cell; 2013 May; 50(3):379-93. PubMed ID: 23583075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection and Degradation of Stalled Nascent Chains via Ribosome-Associated Quality Control.
    Sitron CS; Brandman O
    Annu Rev Biochem; 2020 Jun; 89():417-442. PubMed ID: 32569528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The ribosome destabilizes native and non-native structures in a nascent multidomain protein.
    Liu K; Rehfus JE; Mattson E; Kaiser CM
    Protein Sci; 2017 Jul; 26(7):1439-1451. PubMed ID: 28474852
    [TBL] [Abstract][Full Text] [Related]  

  • 27. L23 protein functions as a chaperone docking site on the ribosome.
    Kramer G; Rauch T; Rist W; Vorderwülbecke S; Patzelt H; Schulze-Specking A; Ban N; Deuerling E; Bukau B
    Nature; 2002 Sep; 419(6903):171-4. PubMed ID: 12226666
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacterial RF3 senses chaperone function in co-translational folding.
    Zhao L; Castanié-Cornet MP; Kumar S; Genevaux P; Hayer-Hartl M; Hartl FU
    Mol Cell; 2021 Jul; 81(14):2914-2928.e7. PubMed ID: 34107307
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A strategy for co-translational folding studies of ribosome-bound nascent chain complexes using NMR spectroscopy.
    Cassaignau AM; Launay HM; Karyadi ME; Wang X; Waudby CA; Deckert A; Robertson AL; Christodoulou J; Cabrita LD
    Nat Protoc; 2016 Aug; 11(8):1492-507. PubMed ID: 27466710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein folding by NMR.
    Zhuravleva A; Korzhnev DM
    Prog Nucl Magn Reson Spectrosc; 2017 May; 100():52-77. PubMed ID: 28552172
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo translation rates can substantially delay the cotranslational folding of the Escherichia coli cytosolic proteome.
    Ciryam P; Morimoto RI; Vendruscolo M; Dobson CM; O'Brien EP
    Proc Natl Acad Sci U S A; 2013 Jan; 110(2):E132-40. PubMed ID: 23256155
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tethering creates unusual kinetics for ribosome-associated chaperones with nascent chains.
    Witt SN
    Protein Pept Lett; 2009; 16(6):631-4. PubMed ID: 19519521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions between nascent proteins and the ribosome surface inhibit co-translational folding.
    Cassaignau AME; Włodarski T; Chan SHS; Woodburn LF; Bukvin IV; Streit JO; Cabrita LD; Waudby CA; Christodoulou J
    Nat Chem; 2021 Dec; 13(12):1214-1220. PubMed ID: 34650236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular chaperone functions in protein folding and proteostasis.
    Kim YE; Hipp MS; Bracher A; Hayer-Hartl M; Hartl FU
    Annu Rev Biochem; 2013; 82():323-55. PubMed ID: 23746257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Birth, life and death of nascent polypeptide chains.
    Jha S; Komar AA
    Biotechnol J; 2011 Jun; 6(6):623-40. PubMed ID: 21538896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Global profiling of SRP interaction with nascent polypeptides.
    Schibich D; Gloge F; Pöhner I; Björkholm P; Wade RC; von Heijne G; Bukau B; Kramer G
    Nature; 2016 Aug; 536(7615):219-23. PubMed ID: 27487212
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Common sequence motifs of nascent chains engage the ribosome surface and trigger factor.
    Deckert A; Cassaignau AME; Wang X; Włodarski T; Chan SHS; Waudby CA; Kirkpatrick JP; Vendruscolo M; Cabrita LD; Christodoulou J
    Proc Natl Acad Sci U S A; 2021 Dec; 118(52):. PubMed ID: 34930833
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding.
    Hoffmann A; Becker AH; Zachmann-Brand B; Deuerling E; Bukau B; Kramer G
    Mol Cell; 2012 Oct; 48(1):63-74. PubMed ID: 22921937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing.
    Bingel-Erlenmeyer R; Kohler R; Kramer G; Sandikci A; Antolić S; Maier T; Schaffitzel C; Wiedmann B; Bukau B; Ban N
    Nature; 2008 Mar; 452(7183):108-11. PubMed ID: 18288106
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing ribosome-nascent chain complexes produced in vivo by NMR spectroscopy.
    Cabrita LD; Hsu ST; Launay H; Dobson CM; Christodoulou J
    Proc Natl Acad Sci U S A; 2009 Dec; 106(52):22239-44. PubMed ID: 20018739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.