BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 32569616)

  • 21. Targeting the Temporal Dynamics of Hypoxia-Induced Tumor-Secreted Factors Halts Tumor Migration.
    Singh M; Tian XJ; Donnenberg VS; Watson AM; Zhang J; Stabile LP; Watkins SC; Xing J; Sant S
    Cancer Res; 2019 Jun; 79(11):2962-2977. PubMed ID: 30952634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HER2 regulates HIF-2α and drives an increased hypoxic response in breast cancer.
    Jarman EJ; Ward C; Turnbull AK; Martinez-Perez C; Meehan J; Xintaropoulou C; Sims AH; Langdon SP
    Breast Cancer Res; 2019 Jan; 21(1):10. PubMed ID: 30670058
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ITGA6 is directly regulated by hypoxia-inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models.
    Brooks DL; Schwab LP; Krutilina R; Parke DN; Sethuraman A; Hoogewijs D; Schörg A; Gotwald L; Fan M; Wenger RH; Seagroves TN
    Mol Cancer; 2016 Mar; 15():26. PubMed ID: 27001172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid collagen alginate hydrogel as a platform for 3D tumor spheroid invasion.
    Liu C; Lewin Mejia D; Chiang B; Luker KE; Luker GD
    Acta Biomater; 2018 Jul; 75():213-225. PubMed ID: 29879553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of carbonic anhydrase IX as a therapeutic target for inhibition of breast cancer invasion and metastasis using a series of in vitro breast cancer models.
    Ward C; Meehan J; Mullen P; Supuran C; Dixon JM; Thomas JS; Winum JY; Lambin P; Dubois L; Pavathaneni NK; Jarman EJ; Renshaw L; Um IH; Kay C; Harrison DJ; Kunkler IH; Langdon SP
    Oncotarget; 2015 Sep; 6(28):24856-70. PubMed ID: 26259239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication Method of a High-Density Co-Culture Tumor-Stroma Platform to Study Cancer Progression.
    Saini H; Nikkhah M
    Methods Mol Biol; 2021; 2258():241-255. PubMed ID: 33340365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Establishing 3-Dimensional Spheroids from Patient-Derived Tumor Samples and Evaluating their Sensitivity to Drugs.
    Moskovits N; Itzhaki E; Tarasenko N; Chausky E; Bareket-Samish A; Kaufman A; Meerson R; Stemmer SM
    J Vis Exp; 2022 Dec; (190):. PubMed ID: 36591992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Roles of acid-extruding ion transporters in regulation of breast cancer cell growth in a 3-dimensional microenvironment.
    Andersen AP; Flinck M; Oernbo EK; Pedersen NB; Viuff BM; Pedersen SF
    Mol Cancer; 2016 Jun; 15(1):45. PubMed ID: 27266704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methods: Using Three-Dimensional Culture (Spheroids) as an In Vitro Model of Tumour Hypoxia.
    Leek R; Grimes DR; Harris AL; McIntyre A
    Adv Exp Med Biol; 2016; 899():167-96. PubMed ID: 27325267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions?
    Hoarau-Véchot J; Rafii A; Touboul C; Pasquier J
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29346265
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hypoxia promotes the phenotypic change of aldehyde dehydrogenase activity of breast cancer stem cells.
    Shiraishi A; Tachi K; Essid N; Tsuboi I; Nagano M; Kato T; Yamashita T; Bando H; Hara H; Ohneda O
    Cancer Sci; 2017 Mar; 108(3):362-372. PubMed ID: 28012234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineered Breast Cancer Cell Spheroids Reproduce Biologic Properties of Solid Tumors.
    Ham SL; Joshi R; Luker GD; Tavana H
    Adv Healthc Mater; 2016 Nov; 5(21):2788-2798. PubMed ID: 27603912
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional in vitro cancer models: a short review.
    Wang C; Tang Z; Zhao Y; Yao R; Li L; Sun W
    Biofabrication; 2014 Jun; 6(2):022001. PubMed ID: 24727833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hypoxia activates cadherin-22 synthesis via eIF4E2 to drive cancer cell migration, invasion and adhesion.
    Kelly NJ; Varga JFA; Specker EJ; Romeo CM; Coomber BL; Uniacke J
    Oncogene; 2018 Feb; 37(5):651-662. PubMed ID: 28991229
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional models of breast cancer-fibroblasts interactions.
    Singh S; Tran S; Putman J; Tavana H
    Exp Biol Med (Maywood); 2020 May; 245(10):879-888. PubMed ID: 32276543
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polyurethane foam scaffold as in vitro model for breast cancer bone metastasis.
    Angeloni V; Contessi N; De Marco C; Bertoldi S; Tanzi MC; Daidone MG; Farè S
    Acta Biomater; 2017 Nov; 63():306-316. PubMed ID: 28927931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres.
    Pradhan S; Clary JM; Seliktar D; Lipke EA
    Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mimicking Tumor Hypoxia in Non-Small Cell Lung Cancer Employing Three-Dimensional In Vitro Models.
    Ziółkowska-Suchanek I
    Cells; 2021 Jan; 10(1):. PubMed ID: 33445709
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioengineering the Oxygen-Deprived Tumor Microenvironment Within a Three-Dimensional Platform for Studying Tumor-Immune Interactions.
    Bhattacharya S; Calar K; Evans C; Petrasko M; de la Puente P
    Front Bioeng Biotechnol; 2020; 8():1040. PubMed ID: 33015012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Designing a tunable 3D heterocellular breast cancer tissue test system.
    Yang CC; Burg KJ
    J Tissue Eng Regen Med; 2015 Mar; 9(3):310-4. PubMed ID: 23307775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.