BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32569741)

  • 1. RNA-seq analysis of palatal transcriptome changes in all-trans retinoic acid-induced cleft palate of mice.
    Peng Y; Wang XH; Su CN; Qiao WW; Gao Q; Sun XF; Meng LY
    Environ Toxicol Pharmacol; 2020 Nov; 80():103438. PubMed ID: 32569741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between HDAC4 enhancer DNA methylation and mRNA expression during palatal fusion induced by all-trans retinoic acid.
    Shu X; Cheng H; Shu S; Tang S; Li K; Dong Z
    J Cell Biochem; 2018 Dec; 119(12):9967-9973. PubMed ID: 30155966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The involvement of hormone-sensitive lipase in all-trans retinoic acid induced cleft palate.
    Zheng K; Ye QN
    Int J Dev Biol; 2022; 66(7-8-9):383-389. PubMed ID: 36688320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of RBP4 in all‑trans retinoic acid induced cleft palate.
    Dong S; Zhang Y; Huang H
    Mol Med Rep; 2017 Nov; 16(5):5915-5923. PubMed ID: 28849085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lower concentrations of receptor for advanced glycation end products and epiregulin in amniotic fluid correlate to chemically induced cleft palate in mice.
    Wang X; Zhu J; Fang Y; Bian Z; Meng L
    Environ Toxicol Pharmacol; 2017 Apr; 51():45-50. PubMed ID: 28282589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of Notch2 in all‑trans retinoic acid‑induced inhibition of mouse embryonic palate mesenchymal cell proliferation.
    Zhang Y; Dong S; Wang J; Wang M; Chen M; Huang H
    Mol Med Rep; 2017 Sep; 16(3):2538-2546. PubMed ID: 28713967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanisms governing mouse embryonic palate mesenchymal cells' proliferation associated with atRA-induced cleft palate in mice: insights from integrated transcriptomic and metabolomic analyses.
    Yu Z; Song S; Wang G; Zhang Y; Zhang Y; Wu Y; Liu H; Zhang Y; Liu X
    Arch Toxicol; 2023 Aug; 97(8):2143-2153. PubMed ID: 37278767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mechanism of cleft palate in C57BL/6N mice induced by retinoic acid].
    Liu XZ; Tao YC; Zhang XL; Yu ZL
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2017 Nov; 52(11):690-694. PubMed ID: 29972949
    [No Abstract]   [Full Text] [Related]  

  • 9. Retinoic Acid Upregulates METTL14 Expression and the m
    Zhu Y; Zhang Y; Jiang Y; Cai H; Liang J; Li H; Wang C; Hou J
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LncRNA Meg3-mediated regulation of the Smad pathway in atRA-induced cleft palate.
    Liu X; Zhang Y; Shen L; He Z; Chen Y; Li N; Zhang X; Zhang T; Gao S; Yue H; Li Z; Yu Z
    Toxicol Lett; 2021 May; 341():51-58. PubMed ID: 33493612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LncRNA H19 and Target Gene-mediated Cleft Palate Induced by TCDD.
    Gao LY; Zhang FQ; Zhao WH; Han GL; Wang X; Li Q; Gao SS; Wu WD
    Biomed Environ Sci; 2017 Sep; 30(9):676-680. PubMed ID: 29081343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional analysis of cleft palate in TGFβ3 mutant mice.
    Liu J; Chanumolu SK; White KM; Albahrani M; Otu HH; Nawshad A
    Sci Rep; 2020 Sep; 10(1):14940. PubMed ID: 32913205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Associations between the proliferation of palatal mesenchymal cells, Tgfβ2 promoter methylation, Meg3 expression, and Smad signaling in atRA-induced cleft palate.
    Yu Z; Wang G; Song S; Zhang Y; Wu Y; Zhang Y; Duan W; Liu X
    Reprod Toxicol; 2023 Dec; 122():108486. PubMed ID: 37866657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide mRNA-Seq Profiling Reveals that LEF1 and SMAD3 Regulate Epithelial-Mesenchymal Transition Through the Hippo Signaling Pathway During Palatal Fusion.
    Shu X; Shu S; Cheng H
    Genet Test Mol Biomarkers; 2019 Mar; 23(3):197-203. PubMed ID: 30767676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Position-dependent correlation between TBX22 exon 5 methylation and palatal shelf fusion in the development of cleft palate.
    Li KE; Shu X; Gong H; Cheng L; Dong Z; Shu S
    An Acad Bras Cienc; 2019 Jun; 91(2):e20180945. PubMed ID: 31241704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High throughput miRNA sequencing and bioinformatics analysis identify the mesenchymal cell proliferation and apoptosis related miRNAs during fetal mice palate development.
    Lu M; Lu F; Liao C; Guo Y; Mao C; Lai Y; Chen X; Chen W
    J Gene Med; 2023 Sep; 25(9):e3531. PubMed ID: 37317697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deletion of the T-box transcription factor gene, Tbx1, in mice induces differential expression of genes associated with cleft palate in humans.
    Funato N; Yanagisawa H
    Arch Oral Biol; 2018 Nov; 95():149-155. PubMed ID: 30121012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide Identification of Foxf2 Target Genes in Palate Development.
    Xu J; Liu H; Lan Y; Park JS; Jiang R
    J Dent Res; 2020 Apr; 99(4):463-471. PubMed ID: 32040930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Induced cleft palat by Retinoic acid through altering the cell proliferation and apoptosis at the key stages of palatal development].
    Hu X; Li Y; Liang M; Lin W
    Zhonghua Zheng Xing Wai Ke Za Zhi; 2016 May; 32(3):220-4. PubMed ID: 30044069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MiR-106a-5p modulates apoptosis and metabonomics changes by TGF-β/Smad signaling pathway in cleft palate.
    Zhang W; Shen Z; Xing Y; Zhao H; Liang Y; Chen J; Zhong X; Shi L; Wan X; Zhou J; Tang S
    Exp Cell Res; 2020 Jan; 386(2):111734. PubMed ID: 31770533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.