BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 32569852)

  • 1. Metabolic rewiring in melanoma drug-resistant cells.
    Bristot IJ; Kehl Dias C; Chapola H; Parsons RB; Klamt F
    Crit Rev Oncol Hematol; 2020 Sep; 153():102995. PubMed ID: 32569852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Slow Cycling Phenotype: A Growing Problem for Treatment Resistance in Melanoma.
    Ahn A; Chatterjee A; Eccles MR
    Mol Cancer Ther; 2017 Jun; 16(6):1002-1009. PubMed ID: 28576947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic flexibility in melanoma: A potential therapeutic target.
    Ruocco MR; Avagliano A; Granato G; Vigliar E; Masone S; Montagnani S; Arcucci A
    Semin Cancer Biol; 2019 Dec; 59():187-207. PubMed ID: 31362075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer Stem Cells and the Slow Cycling Phenotype: How to Cut the Gordian Knot Driving Resistance to Therapy in Melanoma.
    Fattore L; Mancini R; Ciliberto G
    Cancers (Basel); 2020 Nov; 12(11):. PubMed ID: 33202944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotype Switching and the Melanoma Microenvironment; Impact on Immunotherapy and Drug Resistance.
    Hossain SM; Eccles MR
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microenvironment-Driven Dynamic Heterogeneity and Phenotypic Plasticity as a Mechanism of Melanoma Therapy Resistance.
    Ahmed F; Haass NK
    Front Oncol; 2018; 8():173. PubMed ID: 29881716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Connecting Metabolic Rewiring With Phenotype Switching in Melanoma.
    Falletta P; Goding CR; Vivas-García Y
    Front Cell Dev Biol; 2022; 10():930250. PubMed ID: 35912100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interleukin-like EMT inducer regulates partial phenotype switching in MITF-low melanoma cell lines.
    Noguchi K; Dalton AC; Howley BV; McCall BJ; Yoshida A; Diehl JA; Howe PH
    PLoS One; 2017; 12(5):e0177830. PubMed ID: 28545079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor cell oxidative metabolism as a barrier to PD-1 blockade immunotherapy in melanoma.
    Najjar YG; Menk AV; Sander C; Rao U; Karunamurthy A; Bhatia R; Zhai S; Kirkwood JM; Delgoffe GM
    JCI Insight; 2019 Mar; 4(5):. PubMed ID: 30721155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic reprogramming supports the invasive phenotype in malignant melanoma.
    Bettum IJ; Gorad SS; Barkovskaya A; Pettersen S; Moestue SA; Vasiliauskaite K; Tenstad E; Øyjord T; Risa Ø; Nygaard V; Mælandsmo GM; Prasmickaite L
    Cancer Lett; 2015 Sep; 366(1):71-83. PubMed ID: 26095603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma.
    Petrachi T; Romagnani A; Albini A; Longo C; Argenziano G; Grisendi G; Dominici M; Ciarrocchi A; Dallaglio K
    Oncotarget; 2017 Jan; 8(4):6914-6928. PubMed ID: 28036292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitofusins modulate the increase in mitochondrial length, bioenergetics and secretory phenotype in therapy-induced senescent melanoma cells.
    Martínez J; Tarallo D; Martínez-Palma L; Victoria S; Bresque M; Rodríguez-Bottero S; Marmisolle I; Escande C; Cassina P; Casanova G; Bollati-Fogolín M; Agorio C; Moreno M; Quijano C
    Biochem J; 2019 Sep; 476(17):2463-2486. PubMed ID: 31431479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic rewiring directs melanoma immunology.
    Sun N; Tian Y; Chen Y; Guo W; Li C
    Front Immunol; 2022; 13():909580. PubMed ID: 36003368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microenvironment-derived factors driving metastatic plasticity in melanoma.
    Kim IS; Heilmann S; Kansler ER; Zhang Y; Zimmer M; Ratnakumar K; Bowman RL; Simon-Vermot T; Fennell M; Garippa R; Lu L; Lee W; Hollmann T; Xavier JB; White RM
    Nat Commun; 2017 Feb; 8():14343. PubMed ID: 28181494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative antiproliferative signaling by aspirin and indole-3-carbinol targets microphthalmia-associated transcription factor gene expression and promoter activity in human melanoma cells.
    Poindexter KM; Matthew S; Aronchik I; Firestone GL
    Cell Biol Toxicol; 2016 Apr; 32(2):103-19. PubMed ID: 27055402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SOX5 is involved in balanced MITF regulation in human melanoma cells.
    Kordaß T; Weber CE; Oswald M; Ast V; Bernhardt M; Novak D; Utikal J; Eichmüller SB; König R
    BMC Med Genomics; 2016 Feb; 9():10. PubMed ID: 26927636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic Regulation in Mitochondria and Drug Resistance.
    Pan Y; Cao M; Liu J; Yang Q; Miao X; Go VLW; Lee PWN; Xiao GG
    Adv Exp Med Biol; 2017; 1038():149-171. PubMed ID: 29178075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-Term Vemurafenib Exposure Induced Alterations of Cell Phenotypes in Melanoma: Increased Cell Migration and Its Association with EGFR Expression.
    Molnár E; Garay T; Donia M; Baranyi M; Rittler D; Berger W; Tímár J; Grusch M; Hegedűs B
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31514305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FBXW7 regulates a mitochondrial transcription program by modulating MITF.
    Abbate F; Badal B; Mendelson K; Aydin IT; Serasinghe MN; Iqbal R; Mohammed JN; Solovyov A; Greenbaum BD; Chipuk JE; Celebi JT
    Pigment Cell Melanoma Res; 2018 Sep; 31(5):636-640. PubMed ID: 29665239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.