These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32569919)

  • 1. Exploration of the potential capacity of fly ash and bottom ash derived from wood pellet-based thermal power plant for heavy metal removal.
    Park JH; Eom JH; Lee SL; Hwang SW; Kim SH; Kang SW; Yun JJ; Cho JS; Lee YH; Seo DC
    Sci Total Environ; 2020 Oct; 740():140205. PubMed ID: 32569919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recycling of bottom ash derived from combustion of cattle manure and its adsorption behaviors for Cd(II), Cu(II), Pb(II), and Ni(II).
    Hong SH; Shin MC; Lee J; Lee CG; Song DS; Um BH; Park SJ
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):14957-14968. PubMed ID: 33222064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possibility of removing cadmium pollution from the environment using a newly synthesized material coal fly ash.
    Zhao H; Huang X; Zhang G; Li J; He Z; Ji P; Zhao J
    Environ Sci Pollut Res Int; 2020 Feb; 27(5):4997-5008. PubMed ID: 31845260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H
    Wu H; Zhu Y; Bian S; Ko JH; Li SFY; Xu Q
    Chemosphere; 2018 Mar; 195():40-47. PubMed ID: 29253788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study on removal characteristics of heavy metals from aqueous solution by fly ash.
    Cho H; Oh D; Kim K
    J Hazard Mater; 2005 Dec; 127(1-3):187-95. PubMed ID: 16125307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater.
    Wang S; Soudi M; Li L; Zhu ZH
    J Hazard Mater; 2006 May; 133(1-3):243-51. PubMed ID: 16310947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wood pellet fly ash and bottom ash as an effective liming agent and nutrient source for rye grass (Lolium perenne L.) and oats (Avena sativa).
    Park ND; Michael Rutherford P; Thring RW; Helle SS
    Chemosphere; 2012 Jan; 86(4):427-32. PubMed ID: 22104334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of fly ash application on soil microbial response and heavy metal accumulation in soil and rice plant.
    Nayak AK; Raja R; Rao KS; Shukla AK; Mohanty S; Shahid M; Tripathi R; Panda BB; Bhattacharyya P; Kumar A; Lal B; Sethi SK; Puri C; Nayak D; Swain CK
    Ecotoxicol Environ Saf; 2015 Apr; 114():257-62. PubMed ID: 24836933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of pH dynamics on solidification/stabilization of municipal solid waste incineration fly ash.
    Yakubu Y; Zhou J; Ping D; Shu Z; Chen Y
    J Environ Manage; 2018 Feb; 207():243-248. PubMed ID: 29179113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical sequential extraction of heavy metals and sulphur in bottom ash and in fly ash from a pulp and paper mill complex.
    Nurmesniemi H; Pöykiö R; Kuokkanen T; Rämö J
    Waste Manag Res; 2008 Aug; 26(4):389-99. PubMed ID: 18727331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of adsorption properties of Turkish fly ashes. II. The case of chromium (VI) and cadmium (II).
    Bayat B
    J Hazard Mater; 2002 Dec; 95(3):275-90. PubMed ID: 12423942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent.
    Mohan S; Gandhimathi R
    J Hazard Mater; 2009 Sep; 169(1-3):351-9. PubMed ID: 19395171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential for leaching of heavy metals in open-burning bottom ash and soil from a non-engineered solid waste landfill.
    Gwenzi W; Gora D; Chaukura N; Tauro T
    Chemosphere; 2016 Mar; 147():144-54. PubMed ID: 26766350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of accelerated carbonation and zero valent iron on metal leaching from bottom ash.
    Nilsson M; Andreas L; Lagerkvist A
    Waste Manag; 2016 May; 51():97-104. PubMed ID: 26786400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agro-toxicological aspects of coal fly ash (FA) phytoremediation by cereal crops: effects on plant germination, growth and trace elements accumulation.
    Bilski J; Jacob D; Mclean K; McLean E; Soumaila F; Lander M
    Adv Biores; 2012 Dec; 3(4):121-129. PubMed ID: 29657500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroremediation of straw and co-combustion ash under acidic conditions.
    Lima AT; Ottosen LM; Ribeiro AB
    J Hazard Mater; 2009 Jan; 161(2-3):1003-9. PubMed ID: 18499343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detoxification of wood-combustion ashes containing Cr and Cd by thermal treatment.
    Lane DJ; Sippula O; Peräniemi S; Jokiniemi J
    J Hazard Mater; 2020 Dec; 400():123315. PubMed ID: 32947715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption of reactive dye from aqueous solution on biomass fly ash.
    Pengthamkeerati P; Satapanajaru T; Singchan O
    J Hazard Mater; 2008 May; 153(3):1149-56. PubMed ID: 17981394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A feasibility study of Indian fly ash-bentonite as an alternative adsorbent composite to sand-bentonite mixes in landfill liner.
    Gupt CB; Bordoloi S; Sekharan S; Sarmah AK
    Environ Pollut; 2020 Oct; 265(Pt A):114811. PubMed ID: 32512424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of pH and ammonia on the leaching of Cu(II) and Cd(II) from coal fly ash.
    Wang J; Ban H; Teng X; Wang H; Ladwig K
    Chemosphere; 2006 Sep; 64(11):1892-8. PubMed ID: 16510170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.