BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32569969)

  • 1. Functional properties and structural changes of rice proteins with anthocyanins complexation.
    Li T; Wang L; Chen Z; Zhang X; Zhu Z
    Food Chem; 2020 Nov; 331():127336. PubMed ID: 32569969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional and conformational changes to soy proteins accompanying anthocyanins: Focus on covalent and non-covalent interactions.
    Sui X; Sun H; Qi B; Zhang M; Li Y; Jiang L
    Food Chem; 2018 Apr; 245():871-878. PubMed ID: 29287453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared and Raman spectroscopic characterization of structural changes in albumin, globulin, glutelin, and prolamin during rice aging.
    Guo Y; Cai W; Tu K; Tu S; Wang S; Zhu X; Zhang W
    J Agric Food Chem; 2013 Jan; 61(1):185-92. PubMed ID: 23268763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of black rice anthocyanins by self-assembled silk fibroin nanofibrils: Morphology, spectroscopy and thermal protection.
    Ma Z; Jing P
    Int J Biol Macromol; 2020 Mar; 146():1030-1039. PubMed ID: 31730951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of arsenic distribution, bioaccessibility and speciation in rice utilizing continuous extraction and in vitro digestion.
    Wang P; Yin N; Cai X; Du H; Fu Y; Geng Z; Sultana S; Sun G; Cui Y
    Food Chem; 2021 Jun; 346():128969. PubMed ID: 33422920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation, structural characteristics, foaming and emulsifying properties of rice glutelin fibrils.
    Li T; Wang L; Geng H; Zhang X; Chen Z
    Food Chem; 2021 Aug; 354():129554. PubMed ID: 33761336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between Vaccinium bracteatum Thunb. leaf pigment and rice proteins.
    Wang L; Xu Y; Zhou S; Qian H; Zhang H; Qi X; Fan M
    Food Chem; 2016 Mar; 194():272-8. PubMed ID: 26471554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the interaction between cyanidin-3-O-glucoside and casein hydrolysates and its effect on the antioxidant ability of the complexes.
    Yin Z; Wu Y; Chen Y; Qie X; Zeng M; Wang Z; Qin F; Chen J; He Z
    Food Chem; 2021 Mar; 340():127915. PubMed ID: 32889208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Second structure of the protein factions from lotus seeds].
    Cai LH; Zeng HY; Cai XL; Wang YJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Sep; 31(9):2394-8. PubMed ID: 22097834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interactions between anthocyanin and whey protein: A review.
    Ren S; Jiménez-Flores R; Giusti MM
    Compr Rev Food Sci Food Saf; 2021 Nov; 20(6):5992-6011. PubMed ID: 34622535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speciation of Selenium in Brown Rice Fertilized with Selenite and Effects of Selenium Fertilization on Rice Proteins.
    Hu Z; Cheng Y; Suzuki N; Guo X; Xiong H; Ogra Y
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30404212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient extraction and some properties of storage proteins (prolamin and glutelin) in ancient rice cultivars.
    Udaka J; Koga T; Tsuji H; Kimoto M; Takumi K
    J Nutr Sci Vitaminol (Tokyo); 2000 Apr; 46(2):84-90. PubMed ID: 10885795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effectiveness of partially hydrolyzed rice glutelin as a food emulsifier: Comparison to whey protein.
    Xu X; Zhong J; Chen J; Liu C; Luo L; Luo S; Wu L; McClements DJ
    Food Chem; 2016 Dec; 213():700-707. PubMed ID: 27451237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of gliadin, secalin and hordein fractions using analytical techniques.
    Rani M; Sogi DS; Gill BS
    Sci Rep; 2021 Nov; 11(1):23135. PubMed ID: 34848764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complexation of rice glutelin fibrils with cyanidin-3-O-glucoside at acidic condition: Thermal stability, binding mechanism and structural characterization.
    Li T; Wang L; Zhang X; Yu P; Chen Z
    Food Chem; 2021 Nov; 363():130367. PubMed ID: 34198143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-polyphenol interactions enhance the antioxidant capacity of phenolics: analysis of rice glutelin-procyanidin dimer interactions.
    Dai T; Chen J; McClements DJ; Hu P; Ye X; Liu C; Li T
    Food Funct; 2019 Feb; 10(2):765-774. PubMed ID: 30667437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidating the interaction mechanism of rice glutelin and soybean 11S globulin using multi-spectroscopy and molecular dynamics simulation methods.
    Zhu PY; Ma CM; Yang Y; Bian X; Ren LK; Wang B; Liu XF; Chen FL; Zhang G; Zhang N
    Food Chem; 2024 Jun; 442():138615. PubMed ID: 38309242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent conjugates of anthocyanins to soy protein: Unravelling their structure features and in vitro gastrointestinal digestion fate.
    Jiang L; Liu Y; Li L; Qi B; Ju M; Xu Y; Zhang Y; Sui X
    Food Res Int; 2019 Jun; 120():603-609. PubMed ID: 31000277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding interaction between rice glutelin and amylose: Hydrophobic interaction and conformational changes.
    Xu X; Liu W; Zhong J; Luo L; Liu C; Luo S; Chen L
    Int J Biol Macromol; 2015 Nov; 81():942-50. PubMed ID: 26416238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational study of globulin from rice (Oryza sativa) seeds by Fourier-transform infrared spectroscopy.
    Ellepola SW; Choi SM; Ma CY
    Int J Biol Macromol; 2005 Oct; 37(1-2):12-20. PubMed ID: 16140371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.