BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32570485)

  • 21. Automating Ischemic Stroke Subtype Classification Using Machine Learning and Natural Language Processing.
    Garg R; Oh E; Naidech A; Kording K; Prabhakaran S
    J Stroke Cerebrovasc Dis; 2019 Jul; 28(7):2045-2051. PubMed ID: 31103549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes.
    Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC
    J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated Identification of Clinical Procedures in Free-Text Electronic Clinical Records with a Low-Code Named Entity Recognition Workflow.
    Macri C; Teoh I; Bacchi S; Sun M; Selva D; Casson R; Chan W
    Methods Inf Med; 2022 Sep; 61(3-04):84-89. PubMed ID: 36096143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extracting important information from Chinese Operation Notes with natural language processing methods.
    Wang H; Zhang W; Zeng Q; Li Z; Feng K; Liu L
    J Biomed Inform; 2014 Apr; 48():130-6. PubMed ID: 24486562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Natural language processing of lifestyle modification documentation.
    Shoenbill K; Song Y; Gress L; Johnson H; Smith M; Mendonca EA
    Health Informatics J; 2020 Mar; 26(1):388-405. PubMed ID: 30791802
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Data from clinical notes: a perspective on the tension between structure and flexible documentation.
    Rosenbloom ST; Denny JC; Xu H; Lorenzi N; Stead WW; Johnson KB
    J Am Med Inform Assoc; 2011; 18(2):181-6. PubMed ID: 21233086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated extraction of ophthalmic surgery outcomes from the electronic health record.
    Wang SY; Pershing S; Tran E; Hernandez-Boussard T
    Int J Med Inform; 2020 Jan; 133():104007. PubMed ID: 31706228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting.
    Le DV; Montgomery J; Kirkby KC; Scanlan J
    J Biomed Inform; 2018 Oct; 86():49-58. PubMed ID: 30118855
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electronic surveillance of patient safety events using natural language processing.
    Ozonoff A; Milliren CE; Fournier K; Welcher J; Landschaft A; Samnaliev M; Saluvan M; Waltzman M; Kimia AA
    Health Informatics J; 2022; 28(4):14604582221132429. PubMed ID: 36330784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regular expression-based learning to extract bodyweight values from clinical notes.
    Murtaugh MA; Gibson BS; Redd D; Zeng-Treitler Q
    J Biomed Inform; 2015 Apr; 54():186-90. PubMed ID: 25746391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of an Open-Source Annotated Glaucoma Medication Dataset From Clinical Notes in the Electronic Health Record.
    Chen JS; Lin WC; Yang S; Chiang MF; Hribar MR
    Transl Vis Sci Technol; 2022 Nov; 11(11):20. PubMed ID: 36441131
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of documented medication non-adherence in physician notes.
    Turchin A; Wheeler HI; Labreche M; Chu JT; Pendergrass ML; Einbinder JS
    AMIA Annu Symp Proc; 2008 Nov; 2008():732-6. PubMed ID: 18998827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterizing shared and distinct symptom clusters in common chronic conditions through natural language processing of nursing notes.
    Koleck TA; Topaz M; Tatonetti NP; George M; Miaskowski C; Smaldone A; Bakken S
    Res Nurs Health; 2021 Dec; 44(6):906-919. PubMed ID: 34637147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detecting negation and scope in Chinese clinical notes using character and word embedding.
    Kang T; Zhang S; Xu N; Wen D; Zhang X; Lei J
    Comput Methods Programs Biomed; 2017 Mar; 140():53-59. PubMed ID: 28254090
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Examining the use, contents, and quality of free-text tobacco use documentation in the Electronic Health Record.
    Chen ES; Carter EW; Sarkar IN; Winden TJ; Melton GB
    AMIA Annu Symp Proc; 2014; 2014():366-74. PubMed ID: 25954340
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using natural language processing to identify problem usage of prescription opioids.
    Carrell DS; Cronkite D; Palmer RE; Saunders K; Gross DE; Masters ET; Hylan TR; Von Korff M
    Int J Med Inform; 2015 Dec; 84(12):1057-64. PubMed ID: 26456569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives.
    Gobbel GT; Reeves R; Jayaramaraja S; Giuse D; Speroff T; Brown SH; Elkin PL; Matheny ME
    J Biomed Inform; 2014 Apr; 48():54-65. PubMed ID: 24316051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extracting Sexual Trauma Mentions from Electronic Medical Notes Using Natural Language Processing.
    Divita G; Brignone E; Carter ME; Suo Y; Blais RK; Samore MH; Fargo JD; Gundlapalli AV
    Stud Health Technol Inform; 2017; 245():351-355. PubMed ID: 29295114
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early recognition of multiple sclerosis using natural language processing of the electronic health record.
    Chase HS; Mitrani LR; Lu GG; Fulgieri DJ
    BMC Med Inform Decis Mak; 2017 Feb; 17(1):24. PubMed ID: 28241760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studying Associations Between Heart Failure Self-Management and Rehospitalizations Using Natural Language Processing.
    Topaz M; Radhakrishnan K; Blackley S; Lei V; Lai K; Zhou L
    West J Nurs Res; 2017 Jan; 39(1):147-165. PubMed ID: 27628125
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.