These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 32570889)

  • 1. Numerical Analysis of Signal Response Characteristic of Piezoelectric Energy Harvesters Embedded in Pavement.
    Yang H; Zhao Q; Guo X; Zhang W; Liu P; Wang L
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32570889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite Element Modeling and Performance Evaluation of Piezoelectric Energy Harvesters with Various Piezoelectric Unit Distributions.
    Du C; Liu P; Yang H; Jiang G; Wang L; Oeser M
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33799375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact-Driven Energy Harvesting: Piezoelectric Versus Triboelectric Energy Harvesters.
    Thainiramit P; Yingyong P; Isarakorn D
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Piezoelectric Energy Harvester System through Optimizing Multiple Structural Parameters.
    Yang H; Wei Y; Zhang W; Ai Y; Ye Z; Wang L
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topology Optimization of Piezoelectric Energy Harvesters for Enhanced Open-Circuit Voltage Subjected to Harmonic Excitations.
    He M; He M; Zhang X; Xia L
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Piezoelectric Energy Harvesting Design Principles for Materials and Structures: Material Figure-of-Merit and Self-Resonance Tuning.
    Song HC; Kim SW; Kim HS; Lee DG; Kang CY; Nahm S
    Adv Mater; 2020 Dec; 32(51):e2002208. PubMed ID: 33006178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling, Validation, and Performance of Two Tandem Cylinder Piezoelectric Energy Harvesters in Water Flow.
    Song R; Hou C; Yang C; Yang X; Guo Q; Shan X
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Linear-Arc Composite Beam Piezoelectric Energy Harvester Modeling and Finite Element Analysis.
    Zhang X; Guo Y; Zhu F; Chen X; Tian H; Xu H
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Application of PVDF-Based Piezoelectric Patches in Energy Harvesting from Tire Deformation.
    Nguyen K; Bryant M; Song IH; You BH; Khaleghian S
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power Density Improvement of Piezoelectric Energy Harvesters via a Novel Hybridization Scheme with Electromagnetic Transduction.
    Li Z; Xin C; Peng Y; Wang M; Luo J; Xie S; Pu H
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Output Performance of a Novel Symmetrical T-Shaped Trapezoidal Micro Piezoelectric Energy Harvester Using a PZT-5H.
    Xu W; Ao H; Zhou N; Song Z; Jiang H
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear Segmented Arc-Shaped Piezoelectric Branch Beam Energy Harvester for Ultra-Low Frequency Vibrations.
    Piyarathna IE; Thabet AM; Ucgul M; Lemckert C; Lim YY; Tang ZS
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and Piezoelectric Properties of a Stack Units-Based Piezoelectric Device for Roadway Application.
    Li C; Yang F; Liu P; Fu C; Liu Q; Zhao H; Lin P
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Pavement Piezoelectric Energy Harvester for Small Input Displacements.
    Yin B; Wei J; Jiang X; Liu Y
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Piezoelectric Performance of a Symmetrical Ring-Shaped Piezoelectric Energy Harvester Using PZT-5H under a Temperature Gradient.
    Zhou N; Li R; Ao H; Zhang C; Jiang H
    Micromachines (Basel); 2020 Jun; 11(7):. PubMed ID: 32610622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-Skid Characteristics of Asphalt Pavement Based on Partial Tire Aquaplane Conditions.
    Yu M; Kong Y; You Z; Li J; Yang L; Kong L
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Pavement-Embedded Piezoelectric Harvester in a Real Traffic Environment.
    Heller LF; Brito LAT; Coelho MAJ; Brusamarello V; Nuñez WP
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications.
    Pertin O; Guha K; Jakšić O; Jakšić Z; Iannacci J
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, Manufacture and Test of Piezoelectric Cantilever-Beam Energy Harvesters with Hollow Structures.
    Wang B; Zhang C; Lai L; Dong X; Li Y
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.