These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 32571042)

  • 1. Benchmarking doubles-corrected random-phase approximation methods for frequency dependent polarizabilities: Aromatic molecules calculated at the RPA, HRPA, RPA(D), HRPA(D), and SOPPA levels.
    Jørgensen MW; Sauer SPA
    J Chem Phys; 2020 Jun; 152(23):234101. PubMed ID: 32571042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking Correlated Methods for Frequency-Dependent Polarizabilities: Aromatic Molecules with the CC3, CCSD, CC2, SOPPA, SOPPA(CC2), and SOPPA(CCSD) Methods.
    Jørgensen MW; Faber R; Ligabue A; Sauer SPA
    J Chem Theory Comput; 2020 May; 16(5):3006-3018. PubMed ID: 32302474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking Correlated Methods for Static and Dynamic Polarizabilities: The T145 Data Set Evaluated with RPA, RPA(D), HRPA, HRPA(D), SOPPA, SOPPA(CC2), SOPPA(CCSD), CC2, and CCSD.
    Beizaei N; Sauer SPA
    J Phys Chem A; 2021 May; 125(17):3785-3792. PubMed ID: 33899480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noniterative Doubles Corrections to the Random Phase and Higher Random Phase Approximations: Singlet and Triplet Excitation Energies.
    Haase PAB; Faber R; Provasi PF; Sauer SPA
    J Comput Chem; 2020 Jan; 41(1):43-55. PubMed ID: 31576598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RPA(D) and HRPA(D): Two new models for calculations of NMR indirect nuclear spin-spin coupling constants.
    Schnack-Petersen AK; Haase PAB; Faber R; Provasi PF; Sauer SPA
    J Comput Chem; 2018 Dec; 39(32):2647-2666. PubMed ID: 30515901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking quantum chemical methods for the calculation of molecular dipole moments and polarizabilities.
    Hickey AL; Rowley CN
    J Phys Chem A; 2014 May; 118(20):3678-87. PubMed ID: 24796376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the performance of long-range-corrected density functional theory and reduced-size polarized LPol-n basis sets in computations of electric dipole (hyper)polarizabilities of π-conjugated molecules.
    Baranowska-Łączkowska A; Bartkowiak W; Góra RW; Pawłowski F; Zaleśny R
    J Comput Chem; 2013 Apr; 34(10):819-26. PubMed ID: 23280818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonempirical calculations of the one-bond (29)Si-(13)C spin-spin coupling constants taking into account relativistic and solvent corrections.
    Rusakova IL; Rusakov YY; Krivdin LB
    Magn Reson Chem; 2014 Aug; 52(8):413-21. PubMed ID: 24796525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking second order methods for the calculation of vertical electronic excitation energies: valence and Rydberg states in polycyclic aromatic hydrocarbons.
    Falden HH; Falster-Hansen KR; Bak KL; Rettrup S; Sauer SP
    J Phys Chem A; 2009 Oct; 113(43):11995-2012. PubMed ID: 19780572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Description of noncovalent interactions involving π-system with high precision: An assessment of RPA, MP2, and DFT-D methods.
    Su H; Wang H; Wang H; Lu Y; Zhu Z
    J Comput Chem; 2019 Jun; 40(17):1643-1651. PubMed ID: 30937960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking NMR indirect nuclear spin-spin coupling constants: SOPPA, SOPPA(CC2), and SOPPA(CCSD) versus CCSD.
    Kjaer H; Sauer SP; Kongsted J
    J Chem Phys; 2010 Oct; 133(14):144106. PubMed ID: 20949986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basis set and density functional dependence of vibrational Raman optical activity calculations.
    Reiher M; Liégeois V; Ruud K
    J Phys Chem A; 2005 Aug; 109(33):7567-74. PubMed ID: 16834126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules.
    Nguyen BD; Chen GP; Agee MM; Burow AM; Tang MP; Furche F
    J Chem Theory Comput; 2020 Apr; 16(4):2258-2273. PubMed ID: 32105488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic Comparison of Second-Order Polarization Propagator Approximation (SOPPA) and Equation-of-Motion Coupled Cluster Singles and Doubles (EOM-CCSD) Spin-Spin Coupling Constants for Molecules with C, N, and O Double and Triple Bonds and Selected F-Substituted Derivatives.
    Del Bene JE; Alkorta I; Elguero J
    J Chem Theory Comput; 2009 Jan; 5(1):208-16. PubMed ID: 26609834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From CCSD(T)/aug-cc-pVTZ-J to CCSD(T) complete basis set limit isotropic nuclear magnetic shieldings via affordable DFT/CBS calculations.
    Kupka T; Stachów M; Nieradka M; Kaminsky J; Pluta T; Sauer SP
    Magn Reson Chem; 2011 May; 49(5):231-6. PubMed ID: 21387405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct ab initio dynamics study on the rate constants and kinetics isotope effects of CH(3)O+H-->CH(2)O+H(2) reaction.
    Li QS; Zhang Y; Zhang S
    J Chem Phys; 2004 Nov; 121(19):9474-80. PubMed ID: 15538868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Systematic Comparison of Second-Order Polarization Propagator Approximation (SOPPA) and Equation-of-Motion Coupled Cluster Singles and Doubles (EOM-CCSD) Spin-Spin Coupling Constants for Selected Singly Bonded Molecules, and the Hydrides NH3, H2O, and HF and Their Protonated and Deprotonated Ions and Hydrogen-Bonded Complexes.
    Del Bene JE; Alkorta I; Elguero J
    J Chem Theory Comput; 2008 Jun; 4(6):967-73. PubMed ID: 26621237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Property-Oriented Basis Sets for the Computation of Electronic and Nuclear Relaxation Hyperpolarizabilities.
    Zaleśny R; Baranowska-Łączkowska A; Medveď M; Luis JM
    J Chem Theory Comput; 2015 Sep; 11(9):4119-28. PubMed ID: 26575907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Second-Order-Polarization-Propagator-Approximation (SOPPA) in a four-component spinor basis.
    Schnack-Petersen AK; Simmermacher M; Fasshauer E; Jensen HJA; Sauer SPA
    J Chem Phys; 2020 Apr; 152(13):134113. PubMed ID: 32268739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RPA phosphorylation in mitosis alters DNA binding and protein-protein interactions.
    Oakley GG; Patrick SM; Yao J; Carty MP; Turchi JJ; Dixon K
    Biochemistry; 2003 Mar; 42(11):3255-64. PubMed ID: 12641457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.