These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32571051)

  • 1. Descriptors representing two- and three-body atomic distributions and their effects on the accuracy of machine-learned inter-atomic potentials.
    Jinnouchi R; Karsai F; Verdi C; Asahi R; Kresse G
    J Chem Phys; 2020 Jun; 152(23):234102. PubMed ID: 32571051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials.
    Imbalzano G; Anelli A; Giofré D; Klees S; Behler J; Ceriotti M
    J Chem Phys; 2018 Jun; 148(24):241730. PubMed ID: 29960368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials.
    Zaverkin V; Kästner J
    J Chem Theory Comput; 2020 Aug; 16(8):5410-5421. PubMed ID: 32672968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improve the performance of machine-learning potentials by optimizing descriptors.
    Gao H; Wang J; Sun J
    J Chem Phys; 2019 Jun; 150(24):244110. PubMed ID: 31255049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of hyper-parameters in the atomic descriptors for efficient and robust molecular dynamics simulations with machine learning forces.
    Lin J; Tamura R; Futamura Y; Sakurai T; Miyazaki T
    Phys Chem Chem Phys; 2023 Jul; 25(27):17978-17986. PubMed ID: 37377109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Many-Body Descriptors for Predicting Molecular Properties with Machine Learning: Analysis of Pairwise and Three-Body Interactions in Molecules.
    Pronobis W; Tkatchenko A; Müller KR
    J Chem Theory Comput; 2018 Jun; 14(6):2991-3003. PubMed ID: 29750522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact atomic descriptors enable accurate predictions via linear models.
    Zeni C; Rossi K; Glielmo A; de Gironcoli S
    J Chem Phys; 2021 Jun; 154(22):224112. PubMed ID: 34241204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers.
    Chi M; Gargouri R; Schrader T; Damak K; Maâlej R; Sierka M
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incompleteness of Atomic Structure Representations.
    Pozdnyakov SN; Willatt MJ; Bartók AP; Ortner C; Csányi G; Ceriotti M
    Phys Rev Lett; 2020 Oct; 125(16):166001. PubMed ID: 33124874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistent homology-based descriptor for machine-learning potential of amorphous structures.
    Minamitani E; Obayashi I; Shimizu K; Watanabe S
    J Chem Phys; 2023 Aug; 159(8):. PubMed ID: 37606336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerating atomistic simulations with piecewise machine-learned
    Zhang Y; Hu C; Jiang B
    Phys Chem Chem Phys; 2021 Jan; 23(3):1815-1821. PubMed ID: 33236743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity and dimensionality of atomic environment representations used for machine learning interatomic potentials.
    Onat B; Ortner C; Kermode JR
    J Chem Phys; 2020 Oct; 153(14):144106. PubMed ID: 33086812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine-learning effective many-body potentials for anisotropic particles using orientation-dependent symmetry functions.
    Campos-Villalobos G; Giunta G; Marín-Aguilar S; Dijkstra M
    J Chem Phys; 2022 Jul; 157(2):024902. PubMed ID: 35840375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling environment-dependent atomic-level properties in complex-concentrated alloys.
    Farnell MS; McClure ZD; Tripathi S; Strachan A
    J Chem Phys; 2022 Mar; 156(11):114102. PubMed ID: 35317568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation.
    Zhang Y; Hu C; Jiang B
    J Phys Chem Lett; 2019 Sep; 10(17):4962-4967. PubMed ID: 31397157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Representing local atomic environment using descriptors based on local correlations.
    Samanta A
    J Chem Phys; 2018 Dec; 149(24):244102. PubMed ID: 30599737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations.
    Jinnouchi R; Miwa K; Karsai F; Kresse G; Asahi R
    J Phys Chem Lett; 2020 Sep; 11(17):6946-6955. PubMed ID: 32787192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations.
    Fan Z; Wang Y; Ying P; Song K; Wang J; Wang Y; Zeng Z; Xu K; Lindgren E; Rahm JM; Gabourie AJ; Liu J; Dong H; Wu J; Chen Y; Zhong Z; Sun J; Erhart P; Su Y; Ala-Nissila T
    J Chem Phys; 2022 Sep; 157(11):114801. PubMed ID: 36137808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal machine learning for the response of atomistic systems to external fields.
    Zhang Y; Jiang B
    Nat Commun; 2023 Oct; 14(1):6424. PubMed ID: 37827998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Training of Machine Learning Potentials by a Randomized Atomic-System Generator.
    Choi YJ; Jhi SH
    J Phys Chem B; 2020 Oct; 124(39):8704-8710. PubMed ID: 32910653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.