BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32571214)

  • 1. The effect of variant interference on de novo assembly for viral deep sequencing.
    Castro CJ; Marine RL; Ramos E; Ng TFF
    BMC Genomics; 2020 Jun; 21(1):421. PubMed ID: 32571214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viral deep sequencing needs an adaptive approach: IRMA, the iterative refinement meta-assembler.
    Shepard SS; Meno S; Bahl J; Wilson MM; Barnes J; Neuhaus E
    BMC Genomics; 2016 Sep; 17(1):708. PubMed ID: 27595578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full-length de novo viral quasispecies assembly through variation graph construction.
    Baaijens JA; Van der Roest B; Köster J; Stougie L; Schönhuth A
    Bioinformatics; 2019 Dec; 35(24):5086-5094. PubMed ID: 31147688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragmentation and Coverage Variation in Viral Metagenome Assemblies, and Their Effect in Diversity Calculations.
    García-López R; Vázquez-Castellanos JF; Moya A
    Front Bioeng Biotechnol; 2015; 3():141. PubMed ID: 26442255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking and Assessment of Eight
    Gupta AK; Kumar M
    OMICS; 2022 Jul; 26(7):372-381. PubMed ID: 35759429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges and advances for transcriptome assembly in non-model species.
    Ungaro A; Pech N; Martin JF; McCairns RJS; Mévy JP; Chappaz R; Gilles A
    PLoS One; 2017; 12(9):e0185020. PubMed ID: 28931057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FastEtch: A Fast Sketch-Based Assembler for Genomes.
    Ghosh P; Kalyanaraman A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VGEA: an RNA viral assembly toolkit.
    Oluniyi PE; Ajogbasile F; Oguzie J; Uwanibe J; Kayode A; Happi A; Ugwu A; Olumade T; Ogunsanya O; Eromon PE; Folarin O; Frost SDW; Heeney J; Happi CT
    PeerJ; 2021; 9():e12129. PubMed ID: 34567846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De Novo Assembly of Human Herpes Virus Type 1 (HHV-1) Genome, Mining of Non-Canonical Structures and Detection of Novel Drug-Resistance Mutations Using Short- and Long-Read Next Generation Sequencing Technologies.
    Karamitros T; Harrison I; Piorkowska R; Katzourakis A; Magiorkinis G; Mbisa JL
    PLoS One; 2016; 11(6):e0157600. PubMed ID: 27309375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome sequencing of bacteria: sequencing, de novo assembly and rapid analysis using open source tools.
    Kisand V; Lettieri T
    BMC Genomics; 2013 Apr; 14():211. PubMed ID: 23547799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A binning tool to reconstruct viral haplotypes from assembled contigs.
    Chen J; Shang J; Wang J; Sun Y
    BMC Bioinformatics; 2019 Nov; 20(1):544. PubMed ID: 31684876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ensemble strategy that significantly improves de novo assembly of microbial genomes from metagenomic next-generation sequencing data.
    Deng X; Naccache SN; Ng T; Federman S; Li L; Chiu CY; Delwart EL
    Nucleic Acids Res; 2015 Apr; 43(7):e46. PubMed ID: 25586223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of de novo assemblers for variation discovery in personal genomes.
    Tian S; Yan H; Klee EW; Kalmbach M; Slager SL
    Brief Bioinform; 2018 Sep; 19(5):893-904. PubMed ID: 28407084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Illumina de novo assembled and Sanger sequenced viral genomes: A case study for RNA viruses recovered from the plant pathogenic fungus Sclerotinia sclerotiorum.
    Khalifa ME; Varsani A; Ganley ARD; Pearson MN
    Virus Res; 2016 Jul; 219():51-57. PubMed ID: 26581665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of nine popular de novo assemblers in microbial genome assembly.
    Forouzan E; Maleki MSM; Karkhane AA; Yakhchali B
    J Microbiol Methods; 2017 Dec; 143():32-37. PubMed ID: 28939423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The present and future of de novo whole-genome assembly.
    Sohn JI; Nam JW
    Brief Bioinform; 2018 Jan; 19(1):23-40. PubMed ID: 27742661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliable Detection of Herpes Simplex Virus Sequence Variation by High-Throughput Resequencing.
    Morse AM; Calabro KR; Fear JM; Bloom DC; McIntyre LM
    Viruses; 2017 Aug; 9(8):. PubMed ID: 28812996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of Variant Assembly Using HAPHPIPE with Next-Generation Sequence Data from Viruses.
    Gibson KM; Steiner MC; Rentia U; Bendall ML; Pérez-Losada M; Crandall KA
    Viruses; 2020 Jul; 12(7):. PubMed ID: 32674515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BASE: a practical de novo assembler for large genomes using long NGS reads.
    Liu B; Liu CM; Li D; Li Y; Ting HF; Yiu SM; Luo R; Lam TW
    BMC Genomics; 2016 Aug; 17 Suppl 5(Suppl 5):499. PubMed ID: 27586129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.