These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 32571392)
1. A pilot study on a potential relationship between leg bone length and sprint performance in sprinters; are there any event-related differences in 100-m and 400-m sprints? Tomita D; Suga T; Terada M; Tanaka T; Miyake Y; Ueno H; Otsuka M; Nagano A; Isaka T BMC Res Notes; 2020 Jun; 13(1):297. PubMed ID: 32571392 [TBL] [Abstract][Full Text] [Related]
2. A pilot study on the importance of forefoot bone length in male 400-m sprinters: is there a key morphological factor for superior long sprint performance? Tomita D; Suga T; Tanaka T; Ueno H; Miyake Y; Otsuka M; Nagano A; Isaka T BMC Res Notes; 2018 Aug; 11(1):583. PubMed ID: 30103812 [TBL] [Abstract][Full Text] [Related]
3. Achilles Tendon Length Is Not Related to 100-m Sprint Time in Sprinters. Tomita D; Suga T; Ueno H; Miyake Y; Tanaka T; Terada M; Otsuka M; Nagano A; Isaka T J Appl Biomech; 2021 Feb; 37(1):30-35. PubMed ID: 33176276 [TBL] [Abstract][Full Text] [Related]
4. Calcaneus height is a key morphological factor of sprint performance in sprinters. Suga T; Terada M; Tanaka T; Miyake Y; Ueno H; Otsuka M; Nagano A; Isaka T Sci Rep; 2020 Sep; 10(1):15425. PubMed ID: 32963292 [TBL] [Abstract][Full Text] [Related]
5. The Potential Relationship Between Leg Bone Length and Running Performance in Well-Trained Endurance Runners. Ueno H; Suga T; Takao K; Miyake Y; Terada M; Nagano A; Isaka T J Hum Kinet; 2019 Nov; 70():165-172. PubMed ID: 31915486 [TBL] [Abstract][Full Text] [Related]
6. Relationship between the length of the forefoot bones and performance in male sprinters. Tanaka T; Suga T; Otsuka M; Misaki J; Miyake Y; Kudo S; Nagano A; Isaka T Scand J Med Sci Sports; 2017 Dec; 27(12):1673-1680. PubMed ID: 28207966 [TBL] [Abstract][Full Text] [Related]
7. Relationship between body height and spatiotemporal parameters during a 100-m sprint in able-bodied and unilateral transtibial sprinters. Hobara H; Potthast W; Müller R; Kobayashi Y; Hashizume S; Herdoorn TA; Mochimaru M Prosthet Orthot Int; 2017 Oct; 41(5):492-497. PubMed ID: 28094681 [TBL] [Abstract][Full Text] [Related]
8. Characteristics of lower leg and foot muscle thicknesses in sprinters: Does greater foot muscles contribute to sprint performance? Tanaka T; Suga T; Imai Y; Ueno H; Misaki J; Miyake Y; Otsuka M; Nagano A; Isaka T Eur J Sport Sci; 2019 May; 19(4):442-450. PubMed ID: 30360695 [TBL] [Abstract][Full Text] [Related]
9. The contribution of step characteristics to sprint running performance in high-level male and female athletes. Debaere S; Jonkers I; Delecluse C J Strength Cond Res; 2013 Jan; 27(1):116-24. PubMed ID: 22395270 [TBL] [Abstract][Full Text] [Related]
10. Anthropometry-driven block setting improves starting block performance in sprinters. Cavedon V; Sandri M; Pirlo M; Petrone N; Zancanaro C; Milanese C PLoS One; 2019; 14(3):e0213979. PubMed ID: 30917173 [TBL] [Abstract][Full Text] [Related]
11. Countermovement jump peak force relative to body weight and jump height as predictors for sprint running performances: (in)homogeneity of track and field athletes? Markström JL; Olsson CJ J Strength Cond Res; 2013 Apr; 27(4):944-53. PubMed ID: 22692108 [TBL] [Abstract][Full Text] [Related]
12. Knee Extensor Morphology and Sprint Performance in Preadolescent Sprinters. Tottori N; Suga T; Isaka T; Fujita S Res Q Exerc Sport; 2022 Dec; 93(4):781-787. PubMed ID: 34723757 [No Abstract] [Full Text] [Related]
13. Kinematic stride cycle asymmetry is not associated with sprint performance and injury prevalence in athletic sprinters. Haugen T; Danielsen J; McGhie D; Sandbakk Ø; Ettema G Scand J Med Sci Sports; 2018 Mar; 28(3):1001-1008. PubMed ID: 28759127 [TBL] [Abstract][Full Text] [Related]
14. Sex differences in muscle morphology between male and female sprinters. Miller R; Balshaw TG; Massey GJ; Maeo S; Lanza MB; Haug B; Johnston M; Allen SJ; Folland JP J Appl Physiol (1985); 2024 Jun; 136(6):1568-1579. PubMed ID: 38660724 [TBL] [Abstract][Full Text] [Related]
15. Potential relationship between passive plantar flexor stiffness and sprint performance in sprinters. Takahashi C; Suga T; Ueno H; Miyake Y; Otsuka M; Terada M; Nagano A; Isaka T Phys Ther Sport; 2018 Jul; 32():54-58. PubMed ID: 29747080 [TBL] [Abstract][Full Text] [Related]
16. Spatiotemporal Variables of Able-bodied and Amputee Sprinters in Men's 100-m Sprint. Hobara H; Kobayashi Y; Mochimaru M Int J Sports Med; 2015 Jun; 36(6):494-7. PubMed ID: 25700099 [TBL] [Abstract][Full Text] [Related]
17. Relationship between sprint performance and muscle fascicle length in female sprinters. Abe T; Fukashiro S; Harada Y; Kawamoto K J Physiol Anthropol Appl Human Sci; 2001 Mar; 20(2):141-7. PubMed ID: 11385937 [TBL] [Abstract][Full Text] [Related]
18. Reaction time aspects of elite sprinters in athletic world championships. Tønnessen E; Haugen T; Shalfawi SA J Strength Cond Res; 2013 Apr; 27(4):885-92. PubMed ID: 22739331 [TBL] [Abstract][Full Text] [Related]
19. Leg stiffness and sprint ability in amputee sprinters. Hobara H; Tominaga S; Umezawa S; Iwashita K; Okino A; Saito T; Usui F; Ogata T Prosthet Orthot Int; 2012 Sep; 36(3):312-7. PubMed ID: 22918908 [TBL] [Abstract][Full Text] [Related]
20. The knee extensor moment arm is associated with performance in male sprinters. Miyake Y; Suga T; Otsuka M; Tanaka T; Misaki J; Kudo S; Nagano A; Isaka T Eur J Appl Physiol; 2017 Mar; 117(3):533-539. PubMed ID: 28188370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]