BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 32571876)

  • 1. 5'-UTR recruitment of the translation initiation factor eIF4GI or DAP5 drives cap-independent translation of a subset of human mRNAs.
    Haizel SA; Bhardwaj U; Gonzalez RL; Mitra S; Goss DJ
    J Biol Chem; 2020 Aug; 295(33):11693-11706. PubMed ID: 32571876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamically Favorable Interactions between eIF4E Binding Domain of eIF4GI with Structured 5'-Untranslated Regions Drive Cap-Independent Translation of Selected mRNAs.
    Saha B; Bhardwaj U; Goss DJ
    Biochemistry; 2023 Jun; 62(11):1767-1775. PubMed ID: 37132650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translation of eukaryotic translation initiation factor 4GI (eIF4GI) proceeds from multiple mRNAs containing a novel cap-dependent internal ribosome entry site (IRES) that is active during poliovirus infection.
    Byrd MP; Zamora M; Lloyd RE
    J Biol Chem; 2005 May; 280(19):18610-22. PubMed ID: 15755734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel form of DAP5 protein accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry site-mediated translation.
    Henis-Korenblit S; Strumpf NL; Goldstaub D; Kimchi A
    Mol Cell Biol; 2000 Jan; 20(2):496-506. PubMed ID: 10611228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A widespread alternate form of cap-dependent mRNA translation initiation.
    de la Parra C; Ernlund A; Alard A; Ruggles K; Ueberheide B; Schneider RJ
    Nat Commun; 2018 Aug; 9(1):3068. PubMed ID: 30076308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mammalian host protein DAP5 facilitates the initial round of translation of Coxsackievirus B3 RNA.
    Dave P; George B; Raheja H; Rani P; Behera P; Das S
    J Biol Chem; 2019 Oct; 294(42):15386-15394. PubMed ID: 31455634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DAP5 associates with eIF2β and eIF4AI to promote Internal Ribosome Entry Site driven translation.
    Liberman N; Gandin V; Svitkin YV; David M; Virgili G; Jaramillo M; Holcik M; Nagar B; Kimchi A; Sonenberg N
    Nucleic Acids Res; 2015 Apr; 43(7):3764-75. PubMed ID: 25779044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of Hypoxia-Inducible Factor 1α during Hypoxia by DAP5-Induced Translation of PHD2.
    Bryant JD; Brown MC; Dobrikov MI; Dobrikova EY; Gemberling SL; Zhang Q; Gromeier M
    Mol Cell Biol; 2018 Jun; 38(11):. PubMed ID: 29530922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of multiple isoforms of eukaryotic translation initiation factor 4GI by use of alternate translation initiation codons.
    Byrd MP; Zamora M; Lloyd RE
    Mol Cell Biol; 2002 Jul; 22(13):4499-511. PubMed ID: 12052860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Requirement of RNA binding of mammalian eukaryotic translation initiation factor 4GI (eIF4GI) for efficient interaction of eIF4E with the mRNA cap.
    Yanagiya A; Svitkin YV; Shibata S; Mikami S; Imataka H; Sonenberg N
    Mol Cell Biol; 2009 Mar; 29(6):1661-9. PubMed ID: 19114555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cleavage of DAP5 by coxsackievirus B3 2A protease facilitates viral replication and enhances apoptosis by altering translation of IRES-containing genes.
    Hanson PJ; Ye X; Qiu Y; Zhang HM; Hemida MG; Wang F; Lim T; Gu A; Cho B; Kim H; Fung G; Granville DJ; Yang D
    Cell Death Differ; 2016 May; 23(5):828-40. PubMed ID: 26586572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the Structure and DAP5 Binding Site of a Cap-Independent Translational Enhancer mRNA.
    Whittaker A; Goss DJ
    bioRxiv; 2023 Jun; ():. PubMed ID: 37333283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cap-independent polysomal association of natural mRNAs encoding c-myc, BiP, and eIF4G conferred by internal ribosome entry sites.
    Johannes G; Sarnow P
    RNA; 1998 Dec; 4(12):1500-13. PubMed ID: 9848649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel mechanism of eukaryotic translation initiation that is neither m7G-cap-, nor IRES-dependent.
    Terenin IM; Andreev DE; Dmitriev SE; Shatsky IN
    Nucleic Acids Res; 2013 Feb; 41(3):1807-16. PubMed ID: 23268449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of cap-independent translation by variant eukaryotic initiation factor 4G in vivo.
    Kaiser C; Dobrikova EY; Bradrick SS; Shveygert M; Herbert JT; Gromeier M
    RNA; 2008 Oct; 14(10):2170-82. PubMed ID: 18755839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eukaryotic translation initiation factor 4E (eIF4E) binding site and the middle one-third of eIF4GI constitute the core domain for cap-dependent translation, and the C-terminal one-third functions as a modulatory region.
    Morino S; Imataka H; Svitkin YV; Pestova TV; Sonenberg N
    Mol Cell Biol; 2000 Jan; 20(2):468-77. PubMed ID: 10611225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Mitogen-activated Protein Kinase (MAPK)-interacting Kinase (MNK) Preferentially Affects Translation of mRNAs Containing Both a 5'-Terminal Cap and Hairpin.
    Korneeva NL; Song A; Gram H; Edens MA; Rhoads RE
    J Biol Chem; 2016 Feb; 291(7):3455-67. PubMed ID: 26668315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The translation initiation factor DAP5 promotes IRES-driven translation of p53 mRNA.
    Weingarten-Gabbay S; Khan D; Liberman N; Yoffe Y; Bialik S; Das S; Oren M; Kimchi A
    Oncogene; 2014 Jan; 33(5):611-8. PubMed ID: 23318444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eukaryotic translation initiation factor 4GI is a cellular target for NS1 protein, a translational activator of influenza virus.
    Aragón T; de la Luna S; Novoa I; Carrasco L; Ortín J; Nieto A
    Mol Cell Biol; 2000 Sep; 20(17):6259-68. PubMed ID: 10938102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia-inducible factor-1α (HIF-1α) promotes cap-dependent translation of selective mRNAs through up-regulating initiation factor eIF4E1 in breast cancer cells under hypoxia conditions.
    Yi T; Papadopoulos E; Hagner PR; Wagner G
    J Biol Chem; 2013 Jun; 288(26):18732-42. PubMed ID: 23667251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.