These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 32571944)
1. Evolution-inspired design of multicolored photoswitches from a single cyanobacteriochrome scaffold. Fushimi K; Hasegawa M; Ito T; Rockwell NC; Enomoto G; -Win NN; Lagarias JC; Ikeuchi M; Narikawa R Proc Natl Acad Sci U S A; 2020 Jul; 117(27):15573-15580. PubMed ID: 32571944 [TBL] [Abstract][Full Text] [Related]
2. Teal-light absorbing cyanobacterial phytochrome superfamily provides insights into the diverse mechanisms of spectral tuning and facilitates the engineering of photoreceptors for optogenetic tools. Yang HW; Kim YW; Villafani Y; Song JY; Park YI Int J Biol Macromol; 2024 Aug; 274(Pt 2):133407. PubMed ID: 38925190 [TBL] [Abstract][Full Text] [Related]
3. Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily. Rockwell NC; Martin SS; Gulevich AG; Lagarias JC Biochemistry; 2012 Feb; 51(7):1449-63. PubMed ID: 22279972 [TBL] [Abstract][Full Text] [Related]
4. Identification of DXCF cyanobacteriochrome lineages with predictable photocycles. Rockwell NC; Martin SS; Lagarias JC Photochem Photobiol Sci; 2015 May; 14(5):929-41. PubMed ID: 25738434 [TBL] [Abstract][Full Text] [Related]
5. Molecular characterization of D Hasegawa M; Fushimi K; Miyake K; Nakajima T; Oikawa Y; Enomoto G; Sato M; Ikeuchi M; Narikawa R J Biol Chem; 2018 Feb; 293(5):1713-1727. PubMed ID: 29229775 [TBL] [Abstract][Full Text] [Related]
6. Cyanobacteriochrome Photoreceptors Lacking the Canonical Cys Residue. Fushimi K; Rockwell NC; Enomoto G; Ni-Ni-Win ; Martin SS; Gan F; Bryant DA; Ikeuchi M; Lagarias JC; Narikawa R Biochemistry; 2016 Dec; 55(50):6981-6995. PubMed ID: 27935696 [TBL] [Abstract][Full Text] [Related]
7. There and Back Again: Loss and Reacquisition of Two-Cys Photocycles in Cyanobacteriochromes. Rockwell NC; Martin SS; Lagarias JC Photochem Photobiol; 2017 May; 93(3):741-754. PubMed ID: 28055111 [TBL] [Abstract][Full Text] [Related]
8. Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes. Rockwell NC; Martin SS; Feoktistova K; Lagarias JC Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11854-9. PubMed ID: 21712441 [TBL] [Abstract][Full Text] [Related]
9. A new type of dual-Cys cyanobacteriochrome GAF domain found in cyanobacterium Acaryochloris marina, which has an unusual red/blue reversible photoconversion cycle. Narikawa R; Enomoto G; Ni-Ni-Win ; Fushimi K; Ikeuchi M Biochemistry; 2014 Aug; 53(31):5051-9. PubMed ID: 25029277 [TBL] [Abstract][Full Text] [Related]
10. Novel cyanobacteriochrome photoreceptor with the second Cys residue showing atypical orange/blue reversible photoconversion. Hoshino H; Narikawa R Photochem Photobiol Sci; 2023 Feb; 22(2):251-261. PubMed ID: 36156209 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic insight into the photosensory versatility of DXCF cyanobacteriochromes. Rockwell NC; Martin SS; Lagarias JC Biochemistry; 2012 May; 51(17):3576-85. PubMed ID: 22494320 [TBL] [Abstract][Full Text] [Related]
12. Primary and secondary photodynamics of the violet/orange dual-cysteine NpF2164g3 cyanobacteriochrome domain from Nostoc punctiforme. Gottlieb SM; Kim PW; Corley SC; Madsen D; Hanke SJ; Chang CW; Rockwell NC; Martin SS; Lagarias JC; Larsen DS Biochemistry; 2014 Feb; 53(6):1029-40. PubMed ID: 24437620 [TBL] [Abstract][Full Text] [Related]
13. Red/green cyanobacteriochromes acquire isomerization from phycocyanobilin to phycoviolobilin. Hoshino H; Miyake K; Fushimi K; Narikawa R Protein Sci; 2024 Aug; 33(8):e5132. PubMed ID: 39072823 [TBL] [Abstract][Full Text] [Related]
14. The Expanded Red/Green Cyanobacteriochrome Lineage: An Evolutionary Hot Spot. Fushimi K; Ikeuchi M; Narikawa R Photochem Photobiol; 2017 May; 93(3):903-906. PubMed ID: 28500709 [TBL] [Abstract][Full Text] [Related]
15. Unusual ring D fixation by three crucial residues promotes phycoviolobilin formation in the DXCF-type cyanobacteriochrome without the second Cys. Fushimi K; Narikawa R Biochem J; 2021 Mar; 478(5):1043-1059. PubMed ID: 33559683 [TBL] [Abstract][Full Text] [Related]
16. A photoproduct of DXCF cyanobacteriochromes without reversible Cys ligation is destabilized by rotating ring twist of the chromophore. Fushimi K; Matsunaga T; Narikawa R Photochem Photobiol Sci; 2020 Oct; 19(10):1289-1299. PubMed ID: 32789394 [TBL] [Abstract][Full Text] [Related]
17. Photoconversion changes bilin chromophore conjugation and protein secondary structure in the violet/orange cyanobacteriochrome NpF2164g3' [corrected]. Lim S; Rockwell NC; Martin SS; Dallas JL; Lagarias JC; Ames JB Photochem Photobiol Sci; 2014 Jun; 13(6):951-62. PubMed ID: 24745038 [TBL] [Abstract][Full Text] [Related]
18. 1H, 13C, and 15N chemical shift assignments of cyanobacteriochrome NpR6012g4 in the green-absorbing photoproduct state. Lim S; Yu Q; Rockwell NC; Martin SS; Lagarias JC; Ames JB Biomol NMR Assign; 2016 Apr; 10(1):157-61. PubMed ID: 26537963 [TBL] [Abstract][Full Text] [Related]
19. Conserved phenylalanine residues are required for blue-shifting of cyanobacteriochrome photoproducts. Rockwell NC; Martin SS; Gulevich AG; Lagarias JC Biochemistry; 2014 May; 53(19):3118-30. PubMed ID: 24766217 [TBL] [Abstract][Full Text] [Related]
20. Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle. Hirose Y; Rockwell NC; Nishiyama K; Narikawa R; Ukaji Y; Inomata K; Lagarias JC; Ikeuchi M Proc Natl Acad Sci U S A; 2013 Mar; 110(13):4974-9. PubMed ID: 23479641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]