These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32572227)

  • 1. Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics.
    Xiao J; Zhan H; Wang X; Xu ZQ; Xiong Z; Zhang K; Simon GP; Liu JZ; Li D
    Nat Nanotechnol; 2020 Aug; 15(8):683-689. PubMed ID: 32572227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced graphene oxide/ionic liquid composites with tunable interlayer spacing for improved charge/discharge kinetics in supercapacitors.
    Korkut AS; Uralcan B
    Nanotechnology; 2023 Mar; 34(23):. PubMed ID: 36877998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing Nanoconfined Ion Transport in Electrified 2D Laminate Membranes with Electrochemical Impedance Spectroscopy.
    Wang X; Liang Q; Jiang WJ; Wang P; Liao J; Xiong Z; Li D
    Small Methods; 2022 Nov; 6(11):e2200806. PubMed ID: 36148863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen-Doped Graphene for Ionic Liquid Based Supercapacitors.
    Tamilarasan P; Ramaprabhu S
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1154-61. PubMed ID: 26353626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Horn-like Pore Entrance Boosts Charging Dynamics and Charge Storage of Nanoporous Supercapacitors.
    Mo T; Peng J; Dai W; Chen M; Presser V; Feng G
    ACS Nano; 2023 Aug; 17(15):14974-14980. PubMed ID: 37498344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large Variations in the Composition of Ionic Liquid-Solvent Mixtures in Nanoscale Confinement.
    Fang A; Smolyanitsky A
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27243-27250. PubMed ID: 31287650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oscillation Charging Dynamics in Nanopore Supercapacitors with Organic Electrolyte.
    Mo T; Zhou J; He H; Zhu B
    ACS Appl Mater Interfaces; 2023 Nov; 15(44):51274-51280. PubMed ID: 37878835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of Ion Electrosorption in Metal-Organic Framework Micropores with In Operando Small-Angle Neutron Scattering.
    He L; Yang L; Dincă M; Zhang R; Li J
    Angew Chem Int Ed Engl; 2020 Jun; 59(24):9773-9779. PubMed ID: 32160393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the dynamics of charging in nanoporous carbon-based supercapacitors.
    Péan C; Merlet C; Rotenberg B; Madden PA; Taberna PL; Daffos B; Salanne M; Simon P
    ACS Nano; 2014 Feb; 8(2):1576-83. PubMed ID: 24417256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of Enhanced Performance in Nanoporous Electrical Double Layer Capacitors: Insights on Micropore Structure and Electrolyte Composition from Molecular Simulations.
    Uralcan B; Uralcan IB
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16800-16808. PubMed ID: 35377144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrode surface modification of graphene-MnO
    Galib M; Hosen MM; Saha JK; Islam MM; Firoz SH; Rahman MA
    J Mol Model; 2020 Aug; 26(9):251. PubMed ID: 32833166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Understanding of Charging Dynamics in Supercapacitors with Porous Electrodes and Ionic Liquids.
    Mo T; He H; Zhou J; Zeng L; Long Y; Feng G
    J Phys Chem Lett; 2023 Dec; 14(50):11258-11267. PubMed ID: 38060214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-Graphene Oxide Flexible Solid-State Supercapacitors with Enhanced Electrochemical Performance.
    Ogata C; Kurogi R; Awaya K; Hatakeyama K; Taniguchi T; Koinuma M; Matsumoto Y
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26151-26160. PubMed ID: 28715632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene supercapacitor with both high power and energy density.
    Yang H; Kannappan S; Pandian AS; Jang JH; Lee YS; Lu W
    Nanotechnology; 2017 Nov; 28(44):445401. PubMed ID: 28854156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors.
    Griffin JM; Forse AC; Tsai WY; Taberna PL; Simon P; Grey CP
    Nat Mater; 2015 Aug; 14(8):812-9. PubMed ID: 26099110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors.
    Peng L; Peng X; Liu B; Wu C; Xie Y; Yu G
    Nano Lett; 2013 May; 13(5):2151-7. PubMed ID: 23590256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Influence of the Interlayer Distance on the Performance of Thermally Reduced Graphene Oxide Supercapacitors.
    Lin JH
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29419773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supercapacitor Electrodes from the in Situ Reaction between Two-Dimensional Sheets of Black Phosphorus and Graphene Oxide.
    Cao J; He P; Brent JR; Yilmaz H; Lewis DJ; Kinloch IA; Derby B
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10330-10338. PubMed ID: 29504393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wet-spun, porous, orientational graphene hydrogel films for high-performance supercapacitor electrodes.
    Kou L; Liu Z; Huang T; Zheng B; Tian Z; Deng Z; Gao C
    Nanoscale; 2015 Mar; 7(9):4080-7. PubMed ID: 25660705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores.
    Kim T; Jung G; Yoo S; Suh KS; Ruoff RS
    ACS Nano; 2013 Aug; 7(8):6899-905. PubMed ID: 23829569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.