These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Different inocula produce distinctive microbial consortia with similar lignocellulose degradation capacity. Cortes-Tolalpa L; Jiménez DJ; de Lima Brossi MJ; Salles JF; van Elsas JD Appl Microbiol Biotechnol; 2016 Sep; 100(17):7713-25. PubMed ID: 27170322 [TBL] [Abstract][Full Text] [Related]
9. Metagenomic Insight into Lignocellulose Degradation of the Thermophilic Microbial Consortium TMC7. Wang Y; Wang C; Chen Y; Chen B; Guo P; Cui Z J Microbiol Biotechnol; 2021 Aug; 31(8):1123-1133. PubMed ID: 34226407 [TBL] [Abstract][Full Text] [Related]
10. Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia. Wongwilaiwalin S; Laothanachareon T; Mhuantong W; Tangphatsornruang S; Eurwilaichitr L; Igarashi Y; Champreda V Appl Microbiol Biotechnol; 2013 Oct; 97(20):8941-54. PubMed ID: 23381385 [TBL] [Abstract][Full Text] [Related]
11. Antarctic tundra soil metagenome as useful natural resources of cold-active lignocelluolytic enzymes. Oh HN; Park D; Seong HJ; Kim D; Sul WJ J Microbiol; 2019 Oct; 57(10):865-873. PubMed ID: 31571125 [TBL] [Abstract][Full Text] [Related]
12. Characterization of an Anaerobic, Thermophilic, Alkaliphilic, High Lignocellulosic Biomass-Degrading Bacterial Community, ISHI-3, Isolated from Biocompost. Shikata A; Sermsathanaswadi J; Thianheng P; Baramee S; Tachaapaikoon C; Waeonukul R; Pason P; Ratanakhanokchai K; Kosugi A Enzyme Microb Technol; 2018 Nov; 118():66-75. PubMed ID: 30143202 [TBL] [Abstract][Full Text] [Related]
13. Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass. Gladden JM; Allgaier M; Miller CS; Hazen TC; VanderGheynst JS; Hugenholtz P; Simmons BA; Singer SW Appl Environ Microbiol; 2011 Aug; 77(16):5804-12. PubMed ID: 21724886 [TBL] [Abstract][Full Text] [Related]
14. Culturable and metagenomic approaches of wheat bran and wheat straw phyllosphere's highlight new lignocellulolytic microorganisms. Besaury L; Rémond C Lett Appl Microbiol; 2022 Jun; 74(6):840-850. PubMed ID: 35158407 [TBL] [Abstract][Full Text] [Related]
15. Unraveling the roles of coastal bacterial consortia in degradation of various lignocellulosic substrates. Peng Q; Lin L; Tu Q; Wang X; Zhou Y; Chen J; Jiao N; Zhou J mSystems; 2023 Aug; 8(4):e0128322. PubMed ID: 37417747 [TBL] [Abstract][Full Text] [Related]
16. Identification of Genes Conferring Tolerance to Lignocellulose-Derived Inhibitors by Functional Selections in Soil Metagenomes. Forsberg KJ; Patel S; Witt E; Wang B; Ellison TD; Dantas G Appl Environ Microbiol; 2016 Jan; 82(2):528-37. PubMed ID: 26546427 [TBL] [Abstract][Full Text] [Related]
17. A multi-substrate approach for functional metagenomics-based screening for (hemi)cellulases in two wheat straw-degrading microbial consortia unveils novel thermoalkaliphilic enzymes. Maruthamuthu M; Jiménez DJ; Stevens P; van Elsas JD BMC Genomics; 2016 Jan; 17():86. PubMed ID: 26822785 [TBL] [Abstract][Full Text] [Related]
18. Lignocellulolytic systems of soil bacteria: A vast and diverse toolbox for biotechnological conversion processes. López-Mondéjar R; Algora C; Baldrian P Biotechnol Adv; 2019 Nov; 37(6):107374. PubMed ID: 30910513 [TBL] [Abstract][Full Text] [Related]
19. Characterization of Two Marine Lignin-Degrading Consortia and the Potential Microbial Lignin Degradation Network in Nearshore Regions. Ley Y; Cheng XY; Ying ZY; Zhou NY; Xu Y Microbiol Spectr; 2023 Jun; 11(3):e0442422. PubMed ID: 37042774 [TBL] [Abstract][Full Text] [Related]