These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32572545)

  • 1. Insight of low-abundance proteins in rice leaves under Cd stress using combinatorial peptide ligand library technology.
    Lin X; Chai S; Huang S; Mou R; Cao Z; Cao Z; Chen M
    Anal Bioanal Chem; 2020 Sep; 412(22):5435-5446. PubMed ID: 32572545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential phosphoproteome study of the response to cadmium stress in rice.
    Fang Y; Deng X; Lu X; Zheng J; Jiang H; Rao Y; Zeng D; Hu J; Zhang X; Xue D
    Ecotoxicol Environ Saf; 2019 Sep; 180():780-788. PubMed ID: 31154203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Differential expression of proteins in Oryza sativa leaves in response to cadmium stress].
    Xiao QT; Rong H; Zhou LY; Liu J; Lin WX; Lin RY
    Ying Yong Sheng Tai Xue Bao; 2011 Apr; 22(4):1013-9. PubMed ID: 21774326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Looking deep inside: detection of low-abundance proteins in leaf extracts of Arabidopsis and phloem exudates of pumpkin.
    Fröhlich A; Gaupels F; Sarioglu H; Holzmeister C; Spannagl M; Durner J; Lindermayr C
    Plant Physiol; 2012 Jul; 159(3):902-14. PubMed ID: 22555880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics analysis of Mahonia bealei leaves with induction of alkaloids via combinatorial peptide ligand libraries.
    Zhang L; Zhu W; Zhang Y; Yang B; Fu Z; Li X; Tian J
    J Proteomics; 2014 Oct; 110():59-71. PubMed ID: 25109463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinatorial peptide ligand libraries and plant proteomics: a winning strategy at a price.
    Boschetti E; Bindschedler LV; Tang C; Fasoli E; Righetti PG
    J Chromatogr A; 2009 Feb; 1216(8):1215-22. PubMed ID: 19111309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactive Effects of Salicylic Acid and Nitric Oxide in Enhancing Rice Tolerance to Cadmium Stress.
    Mostofa MG; Rahman MM; Ansary MMU; Fujita M; Tran LP
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31752185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress.
    Nwugo CC; Huerta AJ
    J Proteome Res; 2011 Feb; 10(2):518-28. PubMed ID: 21117708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial peptides: A library that continuously probes low-abundance proteins.
    Boschetti E; Zilberstein G; Righetti PG
    Electrophoresis; 2022 Jan; 43(1-2):355-369. PubMed ID: 34498305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iTRAQ-based proteomic analysis reveals the mechanisms of silicon-mediated cadmium tolerance in rice (Oryza sativa) cells.
    Ma J; Sheng H; Li X; Wang L
    Plant Physiol Biochem; 2016 Jul; 104():71-80. PubMed ID: 27017433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNA166 Modulates Cadmium Tolerance and Accumulation in Rice.
    Ding Y; Gong S; Wang Y; Wang F; Bao H; Sun J; Cai C; Yi K; Chen Z; Zhu C
    Plant Physiol; 2018 Aug; 177(4):1691-1703. PubMed ID: 29925586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Differentially Expressed Genes of Rice Under Cadmium Stress Using DDRT-PCR Approach.
    Wang JH; Zhao HM; Mo CH; Hou XW
    Bull Environ Contam Toxicol; 2019 Apr; 102(4):589-594. PubMed ID: 30788561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of Plant Low-Abundance Proteins by Means of Combinatorial Peptide Ligand Library Methods.
    Boschetti E; Righetti PG
    Methods Mol Biol; 2020; 2139():381-404. PubMed ID: 32462601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of exogenous salicylic acid reduces Cd toxicity and Cd accumulation in rice.
    Wang F; Tan H; Huang L; Cai C; Ding Y; Bao H; Chen Z; Zhu C
    Ecotoxicol Environ Saf; 2021 Jan; 207():111198. PubMed ID: 32905932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium.
    Lee K; Bae DW; Kim SH; Han HJ; Liu X; Park HC; Lim CO; Lee SY; Chung WS
    J Plant Physiol; 2010 Feb; 167(3):161-8. PubMed ID: 19853963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicon regulates the expression of vacuolar H
    Cao F; Dai H; Hao PF; Wu F
    Chemosphere; 2020 Feb; 240():124907. PubMed ID: 31550592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foliar application of aspartic acid lowers cadmium uptake and Cd-induced oxidative stress in rice under Cd stress.
    Rizwan M; Ali S; Zaheer Akbar M; Shakoor MB; Mahmood A; Ishaque W; Hussain A
    Environ Sci Pollut Res Int; 2017 Sep; 24(27):21938-21947. PubMed ID: 28780693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iTRAQ-Based Protein Profiling and Biochemical Analysis of Two Contrasting Rice Genotypes Revealed Their Differential Responses to Salt Stress.
    Hussain S; Zhu C; Bai Z; Huang J; Zhu L; Cao X; Nanda S; Hussain S; Riaz A; Liang Q; Wang L; Li Y; Jin Q; Zhang J
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30696055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinach (Spinacia oleracea L.) modulates its proteome differentially in response to salinity, cadmium and their combination stress.
    Bagheri R; Bashir H; Ahmad J; Iqbal M; Qureshi MI
    Plant Physiol Biochem; 2015 Dec; 97():235-45. PubMed ID: 26497449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A proteomic insight into the MSP1 and flg22 induced signaling in Oryza sativa leaves.
    Meng Q; Gupta R; Min CW; Kim J; Kramer K; Wang Y; Park SR; Finkemeier I; Kim ST
    J Proteomics; 2019 Mar; 196():120-130. PubMed ID: 29970347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.