These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32572744)

  • 21. Mechanism of the improved Fe(III)/persulfate reaction by gallic acid for ibuprofen degradation.
    Li L; Zheng D; Gu X; Sun C; Liu Y; Dong W; Wu Y
    Environ Pollut; 2022 Dec; 314():120318. PubMed ID: 36183876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ti(IV) and the Siderophore Desferrioxamine B: A Tight Complex Has Biological and Environmental Implications.
    Jones KE; Batchler KL; Zalouk C; Valentine AM
    Inorg Chem; 2017 Feb; 56(3):1264-1272. PubMed ID: 28118016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low concentrations of surfactants enhance siderophore-promoted dissolution of goethite.
    Carrasco N; Kretzschmar R; Pesch ML; Kraemer SM
    Environ Sci Technol; 2007 May; 41(10):3633-8. PubMed ID: 17547189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Siderophore-Mediated Mobilization of Manganese Limits Iron Solubility in Mixed Mineral Systems.
    Kang K; Peña J
    ACS Earth Space Chem; 2023 Apr; 7(4):662-675. PubMed ID: 37113646
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activation of peroxymonosulfate by BiOCl@Fe
    Wu Y; Fang Z; Shi Y; Chen H; Liu Y; Wang Y; Dong W
    Chemosphere; 2019 Feb; 216():248-257. PubMed ID: 30384293
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic effects of photogenerated Fe(II) on the ligand-controlled dissolution of Iron(hydr)oxides by EDTA and DFOB.
    Biswakarma J; Kang K; Schenkeveld WDC; Kraemer SM; Hering JG; Hug SJ
    Chemosphere; 2021 Jan; 263():128188. PubMed ID: 33297154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis, solution behavior, thermal stability, and biological activity of an Fe(III) complex of an artificial siderophore with intramolecular hydrogen bonding networks.
    Matsumoto K; Ozawa T; Jitsukawa K; Masuda H
    Inorg Chem; 2004 Dec; 43(26):8538-46. PubMed ID: 15606204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidative degradation of atenolol by heat-activated persulfate: Kinetics, degradation pathways and distribution of transformation intermediates.
    Miao D; Peng J; Zhou X; Qian L; Wang M; Zhai L; Gao S
    Chemosphere; 2018 Sep; 207():174-182. PubMed ID: 29793029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conjugates of desferrioxamine B (DFOB) with derivatives of adamantane or with orally available chelators as potential agents for treating iron overload.
    Liu J; Obando D; Schipanski LG; Groebler LK; Witting PK; Kalinowski DS; Richardson DR; Codd R
    J Med Chem; 2010 Feb; 53(3):1370-82. PubMed ID: 20041672
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cr(VI) Reduction by Siderophore Alone and in Combination with Reduced Clay Minerals.
    Zhang D; Liu X; Guo D; Li G; Qu J; Dong H
    Environ Sci Technol; 2022 Sep; 56(17):12315-12324. PubMed ID: 35969222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparing the potential renal protective activity of desferrioxamine B and the novel chelator desferrioxamine B-N-(3-hydroxyadamant-1-yl)carboxamide in a cell model of myoglobinuria.
    Groebler LK; Liu J; Shanu A; Codd R; Witting PK
    Biochem J; 2011 May; 435(3):669-77. PubMed ID: 21320071
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Degradation of atenolol by UV/peroxymonosulfate: kinetics, effect of operational parameters and mechanism.
    Liu X; Zhang T; Zhou Y; Fang L; Shao Y
    Chemosphere; 2013 Nov; 93(11):2717-24. PubMed ID: 24083900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced activation of persulfate by Fe(III) and catechin without light: Reaction kinetics, parameters and mechanism.
    Li Y; Shi Y; Huang D; Wu Y; Dong W
    J Hazard Mater; 2021 Jul; 413():125420. PubMed ID: 33618272
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of persulfate by Fe(III) species: Implications for 4-tert-butylphenol degradation.
    Wu Y; Prulho R; Brigante M; Dong W; Hanna K; Mailhot G
    J Hazard Mater; 2017 Jan; 322(Pt B):380-386. PubMed ID: 27776849
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synergistic use of siderophores and weak organic ligands during zinc transport in the rhizosphere controlled by pH and ion strength gradients.
    Northover GHR; Mao Y; Blasco S; Vilar R; Garcia-España E; Rocco C; Hanif M; Weiss DJ
    Sci Rep; 2022 Apr; 12(1):6774. PubMed ID: 35474082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carrier-facilitated bulk liquid membrane transport of iron(III)-siderophore complexes utilizing first coordination sphere recognition.
    Wirgau JI; Crumbliss AL
    Inorg Chem; 2003 Sep; 42(18):5762-70. PubMed ID: 12950227
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitrate-induced photodegradation of atenolol in aqueous solution: kinetics, toxicity and degradation pathways.
    Ji Y; Zeng C; Ferronato C; Chovelon JM; Yang X
    Chemosphere; 2012 Jul; 88(5):644-9. PubMed ID: 22497785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mobility and transport of copper(II) influenced by the microbial siderophore DFOB: Column experiment and modelling.
    Karimzadeh L; Lippmann-Pipke J; Franke K; Lippold H
    Chemosphere; 2017 Apr; 173():326-329. PubMed ID: 28122291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accessibility of humic-associated Fe to a microbial siderophore: implications for bioavailability.
    Kuhn KM; Maurice PA; Neubauer E; Hofmann T; von der Kammer F
    Environ Sci Technol; 2014 Jan; 48(2):1015-22. PubMed ID: 24359282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exchange of iron by gallium in siderophores.
    Emery T
    Biochemistry; 1986 Aug; 25(16):4629-33. PubMed ID: 2945591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.