These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 32573086)

  • 1. Infection cushions of Fusarium graminearum are fungal arsenals for wheat infection.
    Mentges M; Glasenapp A; Boenisch M; Malz S; Henrissat B; Frandsen RJN; Güldener U; Münsterkötter M; Bormann J; Lebrun MH; Schäfer W; Martinez-Rocha AL
    Mol Plant Pathol; 2020 Aug; 21(8):1070-1087. PubMed ID: 32573086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fusarium graminearum forms mycotoxin producing infection structures on wheat.
    Boenisch MJ; Schäfer W
    BMC Plant Biol; 2011 Jul; 11():110. PubMed ID: 21798058
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Rocher F; Alouane T; Philippe G; Martin ML; Label P; Langin T; Bonhomme L
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163834
    [No Abstract]   [Full Text] [Related]  

  • 4. Integrated transcriptome and hormone profiling highlight the role of multiple phytohormone pathways in wheat resistance against fusarium head blight.
    Wang L; Li Q; Liu Z; Surendra A; Pan Y; Li Y; Zaharia LI; Ouellet T; Fobert PR
    PLoS One; 2018; 13(11):e0207036. PubMed ID: 30403737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression analysis of defense-related genes in wheat in response to infection by Fusarium graminearum.
    Kong L; Ohm HW; Anderson JM
    Genome; 2007 Nov; 50(11):1038-48. PubMed ID: 18059549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved dissection of the molecular crosstalk driving Fusarium head blight in wheat provides new insights into host susceptibility determinism.
    Fabre F; Vignassa M; Urbach S; Langin T; Bonhomme L
    Plant Cell Environ; 2019 Jul; 42(7):2291-2308. PubMed ID: 30866080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome dynamics of a susceptible wheat upon Fusarium head blight reveals that molecular responses to Fusarium graminearum infection fit over the grain development processes.
    Chetouhi C; Bonhomme L; Lasserre-Zuber P; Cambon F; Pelletier S; Renou JP; Langin T
    Funct Integr Genomics; 2016 Mar; 16(2):183-201. PubMed ID: 26797431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A linear nonribosomal octapeptide from Fusarium graminearum facilitates cell-to-cell invasion of wheat.
    Jia LJ; Tang HY; Wang WQ; Yuan TL; Wei WQ; Pang B; Gong XM; Wang SF; Li YJ; Zhang D; Liu W; Tang WH
    Nat Commun; 2019 Feb; 10(1):922. PubMed ID: 30804501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The adenylyl cyclase plays a regulatory role in the morphogenetic switch from vegetative to pathogenic lifestyle of Fusarium graminearum on wheat.
    Bormann J; Boenisch MJ; Brückner E; Firat D; Schäfer W
    PLoS One; 2014; 9(3):e91135. PubMed ID: 24603887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusarium graminearum TRI14 is required for high virulence and DON production on wheat but not for DON synthesis in vitro.
    Dyer RB; Plattner RD; Kendra DF; Brown DW
    J Agric Food Chem; 2005 Nov; 53(23):9281-7. PubMed ID: 16277434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat.
    Qi PF; Johnston A; Balcerzak M; Rocheleau H; Harris LJ; Long XY; Wei YM; Zheng YL; Ouellet T
    Fungal Biol; 2012 Mar; 116(3):413-26. PubMed ID: 22385623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exogenous Abscisic Acid and Gibberellic Acid Elicit Opposing Effects on Fusarium graminearum Infection in Wheat.
    Buhrow LM; Cram D; Tulpan D; Foroud NA; Loewen MC
    Phytopathology; 2016 Sep; 106(9):986-96. PubMed ID: 27135677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The transcription cofactor FgSwi6 plays a role in growth and development, carbendazim sensitivity, cellulose utilization, lithium tolerance, deoxynivalenol production and virulence in the filamentous fungus Fusarium graminearum.
    Liu N; Fan F; Qiu D; Jiang L
    Fungal Genet Biol; 2013; 58-59():42-52. PubMed ID: 23994322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide analysis of family-1 UDP glycosyltransferases (UGT) and identification of UGT genes for FHB resistance in wheat (Triticum aestivum L.).
    He Y; Ahmad D; Zhang X; Zhang Y; Wu L; Jiang P; Ma H
    BMC Plant Biol; 2018 Apr; 18(1):67. PubMed ID: 29673318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of the Fusarium graminearum cerato-platanin proteins in fungal growth and plant infection.
    Quarantin A; Glasenapp A; Schäfer W; Favaron F; Sella L
    Plant Physiol Biochem; 2016 Dec; 109():220-229. PubMed ID: 27744264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-Wide Analysis of Small Secreted Cysteine-Rich Proteins Identifies Candidate Effector Proteins Potentially Involved in Fusarium graminearum-Wheat Interactions.
    Lu S; Edwards MC
    Phytopathology; 2016 Feb; 106(2):166-76. PubMed ID: 26524547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of QTL and eQTL controlling early Fusarium graminearum infection and deoxynivalenol levels in a Wuhan 1 x Nyubai doubled haploid wheat population.
    Fauteux F; Wang Y; Rocheleau H; Liu Z; Pan Y; Fedak G; McCartney C; Ouellet T
    BMC Plant Biol; 2019 Dec; 19(1):536. PubMed ID: 31795937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic profiling of wheat rachis node infection by Fusarium graminearum - decoding deoxynivalenol-dependent susceptibility.
    Bönnighausen J; Schauer N; Schäfer W; Bormann J
    New Phytol; 2019 Jan; 221(1):459-469. PubMed ID: 30084118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome dynamics associated with resistance and susceptibility against fusarium head blight in four wheat genotypes.
    Pan Y; Liu Z; Rocheleau H; Fauteux F; Wang Y; McCartney C; Ouellet T
    BMC Genomics; 2018 Aug; 19(1):642. PubMed ID: 30157778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TaFROG Encodes a Pooideae Orphan Protein That Interacts with SnRK1 and Enhances Resistance to the Mycotoxigenic Fungus Fusarium graminearum.
    Perochon A; Jianguang J; Kahla A; Arunachalam C; Scofield SR; Bowden S; Wallington E; Doohan FM
    Plant Physiol; 2015 Dec; 169(4):2895-906. PubMed ID: 26508775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.