BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 32573194)

  • 1. Rational Construction of a Mitochondrial Targeting, Fluorescent Self-Reporting Drug-Delivery Platform for Combined Enhancement of Endogenous ROS Responsiveness.
    Li J; Wei YJ; Yang XL; Wu WX; Zhang MQ; Li MY; Hu ZE; Liu YH; Wang N; Yu XQ
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32432-32445. PubMed ID: 32573194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymeric nanoparticles responsive to intracellular ROS for anticancer drug delivery.
    Xu L; Zhao M; Gao W; Yang Y; Zhang J; Pu Y; He B
    Colloids Surf B Biointerfaces; 2019 Sep; 181():252-260. PubMed ID: 31153020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delivery of mitochondriotropic doxorubicin derivatives using self-assembling hyaluronic acid nanocarriers in doxorubicin-resistant breast cancer.
    Liu HN; Guo NN; Guo WW; Huang-Fu MY; Vakili MR; Chen JJ; Xu WH; Wei QC; Han M; Lavasanifar A; Gao JQ
    Acta Pharmacol Sin; 2018 Oct; 39(10):1681-1692. PubMed ID: 29849132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of Mitochondrial Cell Death and Reversal of Anticancer Drug Resistance via Nanocarriers Composed of a Triphenylphosphonium Derivative of Tocopheryl Polyethylene Glycol Succinate.
    Singh Y; Viswanadham KKDR; Pawar VK; Meher J; Jajoriya AK; Omer A; Jaiswal S; Dewangan J; Bora HK; Singh P; Rath SK; Lal J; Mishra DP; Chourasia MK
    Mol Pharm; 2019 Sep; 16(9):3744-3759. PubMed ID: 31441308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial targeted doxorubicin derivatives delivered by ROS-responsive nanocarriers to breast tumor for overcoming of multidrug resistance.
    Zhong XC; Shi MH; Liu HN; Chen JJ; Wang TT; Lin MT; Zhang ZT; Zhou Y; Lu YY; Xu WH; Gao JQ; Xu DH; Han M; Chen YD
    Pharm Dev Technol; 2021 Jan; 26(1):21-29. PubMed ID: 33070673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of pH-Responsive Nanoparticles with an AIE Feature for Imaging Intracellular Drug Delivery.
    Wang X; Yang Y; Zhuang Y; Gao P; Yang F; Shen H; Guo H; Wu D
    Biomacromolecules; 2016 Sep; 17(9):2920-9. PubMed ID: 27442328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ROS-Activated Ratiometric Fluorescent Polymeric Nanoparticles for Self-Reporting Drug Delivery.
    Zhang M; Song CC; Su S; Du FS; Li ZC
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):7798-7810. PubMed ID: 29424527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of supramolecular star-shaped amphiphilic copolymers for ROS-triggered drug release.
    Zuo C; Peng J; Cong Y; Dai X; Zhang X; Zhao S; Zhang X; Ma L; Wang B; Wei H
    J Colloid Interface Sci; 2018 Mar; 514():122-131. PubMed ID: 29248814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired polynorepinephrine nanoparticles as an efficient vehicle for enhanced drug delivery.
    Lu Z; Douek AM; Rozario AM; Tabor RF; Kaslin J; Follink B; Teo BM
    J Mater Chem B; 2020 Feb; 8(5):961-968. PubMed ID: 31922181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triphenylphosphonium-conjugated glycol chitosan microspheres for mitochondria-targeted drug delivery.
    Lee YH; Park HI; Chang WS; Choi JS
    Int J Biol Macromol; 2021 Jan; 167():35-45. PubMed ID: 33227331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-Induced Transformable Peptide Nanocarriers with Enhanced Drug Permeability and Retention to Improve Tumor Nanotherapy Efficacy.
    Gong Z; Zhou B; Liu X; Cao J; Hong Z; Wang J; Sun X; Yuan X; Tan H; Ji H; Bai J
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):55913-55927. PubMed ID: 34784165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(ethylene glycol) shell-sheddable TAT-modified core cross-linked nano-micelles: TAT-enhanced cellular uptake and lysosomal pH-triggered doxorubicin release.
    Zhang Y; Xiao Y; Huang Y; He Y; Xu Y; Lu W; Yu J
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110772. PubMed ID: 31999965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial delivery of doxorubicin by triphenylphosphonium-functionalized hyperbranched nanocarriers results in rapid and severe cytotoxicity.
    Theodossiou TA; Sideratou Z; Katsarou ME; Tsiourvas D
    Pharm Res; 2013 Nov; 30(11):2832-42. PubMed ID: 23921486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-stimuli-responsive nanomicelles fabricated using synthetic polymer polylysine conjugates for tumor microenvironment dependent drug delivery.
    Augustine R; Kim DK; Kalva N; Eom KH; Kim JH; Kim I
    J Mater Chem B; 2020 Jul; 8(26):5745-5755. PubMed ID: 32519736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile preparation of core cross-linked nanomicelles based on graft copolymers with pH responsivity and reduction sensitivity for doxorubicin delivery.
    Chen T; Xiao Y; Lu W; Liu S; Gan L; Yu J; Huang J
    Colloids Surf B Biointerfaces; 2018 Jan; 161():606-613. PubMed ID: 29156337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activatable Fluorescence Imaging and Targeted Drug Delivery via Extracellular Vesicle-Like Porous Coordination Polymer Nanoparticles.
    Wu Y; Zhang F; Wang K; Luo P; Wei Y; Liu S
    Anal Chem; 2019 Nov; 91(21):14036-14042. PubMed ID: 31603308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cascade-amplifying synergistic effects of chemo-photodynamic therapy using ROS-responsive polymeric nanocarriers.
    Sun CY; Cao Z; Zhang XJ; Sun R; Yu CS; Yang X
    Theranostics; 2018; 8(11):2939-2953. PubMed ID: 29896295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse poly(ε-caprolactone)-g-dextran graft copolymers. Nano-carriers for intracellular uptake of anticancer drugs.
    Delorme V; Lichon L; Mahindad H; Hunger S; Laroui N; Daurat M; Godefroy A; Coudane J; Gary-Bobo M; Van Den Berghe H
    Carbohydr Polym; 2020 Mar; 232():115764. PubMed ID: 31952581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Assembled Aptamer-Grafted Hyperbranched Polymer Nanocarrier for Targeted and Photoresponsive Drug Delivery.
    Yang L; Sun H; Liu Y; Hou W; Yang Y; Cai R; Cui C; Zhang P; Pan X; Li X; Li L; Sumerlin BS; Tan W
    Angew Chem Int Ed Engl; 2018 Dec; 57(52):17048-17052. PubMed ID: 30387923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cinnamaldehyde-Based Poly(ester-thioacetal) To Generate Reactive Oxygen Species for Fabricating Reactive Oxygen Species-Responsive Nanoparticles.
    Xu L; Zhao M; Zhang H; Gao W; Guo Z; Zhang X; Zhang J; Cao J; Pu Y; He B
    Biomacromolecules; 2018 Dec; 19(12):4658-4667. PubMed ID: 30418756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.