These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 32573199)

  • 21. Excellent Stability of Ga-Doped Garnet Electrolyte against Li Metal Anode
    Li J; Luo H; Liu K; Zhang J; Zhai H; Su X; Wu J; Tang X; Tan G
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):7165-7174. PubMed ID: 36701379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Compositional Dependence of Li-Ion Conductivity in Garnet-Rich Composite Electrolytes for All-Solid-State Lithium-Ion Batteries-Toward Understanding the Drawbacks of Ceramic-Rich Composites.
    Waidha AI; Ferber T; Donzelli M; Hosseinpourkahvaz N; Vanita V; Dirnberger K; Ludwigs S; Hausbrand R; Jaegermann W; Clemens O
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):31111-31128. PubMed ID: 34161723
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of Protonation on the Electrochemical Performance of Li
    Grissa R; Payandeh S; Heinz M; Battaglia C
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14700-14709. PubMed ID: 33729745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bonding Lithium Metal with Garnet Electrolyte by Interfacial Lithiophobicity/Lithiophilicity Transition Mechanism over 380 °C.
    Jin Y; Lu H; Lyu N; Jiang X; Zhang D; Zhang Z; Xu J; Sun B; Liu K; Wu H
    Small Methods; 2023 Apr; 7(4):e2201140. PubMed ID: 36808501
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneously Improved Cubic Phase Stability and Li-Ion Conductivity in Garnet-Type Solid Electrolytes Enabled by Controlling the Al Occupation Sites.
    Kim A; Kang JH; Song K; Kang B
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12331-12339. PubMed ID: 35213140
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reduced Energy Barrier for Li
    Zhu Y; Wu S; Pan Y; Zhang X; Yan Z; Xiang Y
    Nanoscale Res Lett; 2020 Jul; 15(1):153. PubMed ID: 32712882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application.
    Kataoka K; Nagata H; Akimoto J
    Sci Rep; 2018 Jul; 8(1):9965. PubMed ID: 29967436
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A strategy of enhancing the ionic conductivity of Li
    Kim M; Park HG; Park K
    Phys Chem Chem Phys; 2022 Dec; 24(47):29159-29164. PubMed ID: 36444755
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li(+) conductivity of Li7La3Zr2O12 lithium garnet.
    Dhivya L; Murugan R
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17606-15. PubMed ID: 25265573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NMR Investigations of Crystalline and Glassy Solid Electrolytes for Lithium Batteries: A Brief Review.
    Morales DJ; Greenbaum S
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32403435
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tailor-made development of fast Li ion conducting garnet-like solid electrolytes.
    Ramzy A; Thangadurai V
    ACS Appl Mater Interfaces; 2010 Feb; 2(2):385-90. PubMed ID: 20356183
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Composite Electrolyte for All-Solid-State Lithium Batteries: Low-Temperature Fabrication and Conductivity Enhancement.
    Lee SD; Jung KN; Kim H; Shin HS; Song SW; Park MS; Lee JW
    ChemSusChem; 2017 May; 10(10):2175-2181. PubMed ID: 28317277
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In Situ Formed Shields Enabling Li
    Wu JF; Pu BW; Wang D; Shi SQ; Zhao N; Guo X; Guo X
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):898-905. PubMed ID: 30516385
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Li-Ion Diffusion in Nanoconfined LiBH
    Zettl R; Gombotz M; Clarkson D; Greenbaum SG; Ngene P; de Jongh PE; Wilkening HMR
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38570-38583. PubMed ID: 32786241
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relationship between Li
    Hayamizu K; Terada Y; Kataoka K; Akimoto J; Haishi T
    Phys Chem Chem Phys; 2019 Nov; 21(42):23589-23597. PubMed ID: 31621713
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dendrite nucleation in lithium-conductive ceramics.
    Li G; Monroe CW
    Phys Chem Chem Phys; 2019 Sep; 21(36):20354-20359. PubMed ID: 31497811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Overcoming the Interfacial Limitations Imposed by the Solid-Solid Interface in Solid-State Batteries Using Ionic Liquid-Based Interlayers.
    Pervez SA; Kim G; Vinayan BP; Cambaz MA; Kuenzel M; Hekmatfar M; Fichtner M; Passerini S
    Small; 2020 Apr; 16(14):e2000279. PubMed ID: 32105407
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Grain Boundary Softening: A Potential Mechanism for Lithium Metal Penetration through Stiff Solid Electrolytes.
    Yu S; Siegel DJ
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38151-38158. PubMed ID: 30360045
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual-Doped Cubic Garnet Solid Electrolytes with Superior Air Stability.
    Abrha LH; Hagos TT; Nikodimos Y; Bezabh HK; Berhe GB; Hagos TM; Huang CJ; Tegegne WA; Jiang SK; Weldeyohannes HH; Wu SH; Su WN; Hwang BJ
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):25709-25717. PubMed ID: 32407073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.