BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32573222)

  • 1. Dietary Genistein Reduces Methylglyoxal and Advanced Glycation End Product Accumulation in Obese Mice Treated with High-Fat Diet.
    Zhao Y; Zhu Y; Wang P; Sang S
    J Agric Food Chem; 2020 Jul; 68(28):7416-7424. PubMed ID: 32573222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dietary Genistein Inhibits Methylglyoxal-Induced Advanced Glycation End Product Formation in Mice Fed a High-Fat Diet.
    Zhao Y; Wang P; Sang S
    J Nutr; 2019 May; 149(5):776-787. PubMed ID: 31050753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dietary Quercetin Reduces Plasma and Tissue Methylglyoxal and Advanced Glycation End Products in Healthy Mice Treated with Methylglyoxal.
    Zhao Y; Tang Y; Sang S
    J Nutr; 2021 Sep; 151(9):2601-2609. PubMed ID: 34091674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trapping Methylglyoxal by Genistein and Its Metabolites in Mice.
    Wang P; Chen H; Sang S
    Chem Res Toxicol; 2016 Mar; 29(3):406-14. PubMed ID: 26881724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of Glyoxalase 1 Induces Compensatory Mechanism to Achieve Dicarbonyl Detoxification in Mammalian Schwann Cells.
    Morgenstern J; Fleming T; Schumacher D; Eckstein V; Freichel M; Herzig S; Nawroth P
    J Biol Chem; 2017 Feb; 292(8):3224-3238. PubMed ID: 27956549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related alteration in the distribution of methylglyoxal and its metabolic enzymes in the mouse brain.
    Koike S; Ando C; Usui Y; Kibune Y; Nishimoto S; Suzuki T; Ogasawara Y
    Brain Res Bull; 2019 Jan; 144():164-170. PubMed ID: 30508605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eucommia ulmoides Ameliorates Glucotoxicity by Suppressing Advanced Glycation End-Products in Diabetic Mice Kidney.
    Do MH; Hur J; Choi J; Kim M; Kim MJ; Kim Y; Ha SK
    Nutrients; 2018 Feb; 10(3):. PubMed ID: 29495397
    [No Abstract]   [Full Text] [Related]  

  • 8.
    Truong CS; Seo E; Jun HS
    Oxid Med Cell Longev; 2019; 2019():4310319. PubMed ID: 31976027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dicarbonyl stress in clinical obesity.
    Masania J; Malczewska-Malec M; Razny U; Goralska J; Zdzienicka A; Kiec-Wilk B; Gruca A; Stancel-Mozwillo J; Dembinska-Kiec A; Rabbani N; Thornalley PJ
    Glycoconj J; 2016 Aug; 33(4):581-9. PubMed ID: 27338619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Glyoxalase in Glycation and Carbonyl Stress Induced Metabolic Disorders.
    Saeed M; Kausar MA; Singh R; Siddiqui AJ; Akhter A
    Curr Protein Pept Sci; 2020; 21(9):846-859. PubMed ID: 32368974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that methylglyoxal and receptor for advanced glycation end products are implicated in bladder dysfunction of obese diabetic
    Oliveira AL; Medeiros ML; Ghezzi AC; Dos Santos GA; Mello GC; Mónica FZ; Antunes E
    Am J Physiol Renal Physiol; 2023 Oct; 325(4):F436-F447. PubMed ID: 37560771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycation of β-lactoglobulin and antiglycation by genistein in different reactive carbonyl model systems.
    Kong Y; Li X; Zheng T; Lv L
    Food Chem; 2015 Sep; 183():36-42. PubMed ID: 25863607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced Glycation Endproducts Are Increased in the Animal Model of Multiple Sclerosis but Cannot Be Reduced by Pyridoxamine Treatment or Glyoxalase 1 Overexpression.
    Wetzels S; Wouters K; Miyata T; Scheijen JLJM; Hendriks JJA; Schalkwijk CG; Vanmierlo T
    Int J Mol Sci; 2018 Apr; 19(5):. PubMed ID: 29702605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metformin inhibits methylglyoxal-induced retinal pigment epithelial cell death and retinopathy via AMPK-dependent mechanisms: Reversing mitochondrial dysfunction and upregulating glyoxalase 1.
    Sekar P; Hsiao G; Hsu SH; Huang DY; Lin WW; Chan CM
    Redox Biol; 2023 Aug; 64():102786. PubMed ID: 37348156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation and characterization of mouse knockout for glyoxalase 1.
    Jang S; Kwon DM; Kwon K; Park C
    Biochem Biophys Res Commun; 2017 Aug; 490(2):460-465. PubMed ID: 28623132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methylglyoxal-derived advanced glycation end products contribute to negative cardiac remodeling and dysfunction post-myocardial infarction.
    Blackburn NJR; Vulesevic B; McNeill B; Cimenci CE; Ahmadi A; Gonzalez-Gomez M; Ostojic A; Zhong Z; Brownlee M; Beisswenger PJ; Milne RW; Suuronen EJ
    Basic Res Cardiol; 2017 Sep; 112(5):57. PubMed ID: 28864889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soybean soluble polysaccharides enhance bioavailability of genistein and its prevention against obesity and metabolic syndrome of mice with chronic high fat consumption.
    Lu Y; Zhao A; Wu Y; Zhao Y; Yang X
    Food Funct; 2019 Jul; 10(7):4153-4165. PubMed ID: 31241065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperglycemia impairs proteasome function by methylglyoxal.
    Queisser MA; Yao D; Geisler S; Hammes HP; Lochnit G; Schleicher ED; Brownlee M; Preissner KT
    Diabetes; 2010 Mar; 59(3):670-8. PubMed ID: 20009088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genistein inhibits advanced glycation end product formation by trapping methylglyoxal.
    Lv L; Shao X; Chen H; Ho CT; Sang S
    Chem Res Toxicol; 2011 Apr; 24(4):579-86. PubMed ID: 21344933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aldose reductase (AKR1B3) regulates the accumulation of advanced glycosylation end products (AGEs) and the expression of AGE receptor (RAGE).
    Baba SP; Hellmann J; Srivastava S; Bhatnagar A
    Chem Biol Interact; 2011 May; 191(1-3):357-63. PubMed ID: 21276777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.