These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 32573774)
1. On the donor substrate dependence of group-transfer reactions by hydrolytic enzymes: Insight from kinetic analysis of sucrose phosphorylase-catalyzed transglycosylation. Klimacek M; Sigg A; Nidetzky B Biotechnol Bioeng; 2020 Oct; 117(10):2933-2943. PubMed ID: 32573774 [TBL] [Abstract][Full Text] [Related]
2. Three-level hybrid modeling for systematic optimization of biocatalytic synthesis: α-glucosyl glycerol production by enzymatic trans-glycosylation from sucrose. Sigg A; Klimacek M; Nidetzky B Biotechnol Bioeng; 2021 Oct; 118(10):4028-4040. PubMed ID: 34232503 [TBL] [Abstract][Full Text] [Related]
3. Acid-base catalysis in Leuconostoc mesenteroides sucrose phosphorylase probed by site-directed mutagenesis and detailed kinetic comparison of wild-type and Glu237-->Gln mutant enzymes. Schwarz A; Brecker L; Nidetzky B Biochem J; 2007 May; 403(3):441-9. PubMed ID: 17233628 [TBL] [Abstract][Full Text] [Related]
4. Engineering of a Thermostable Biocatalyst for the Synthesis of 2-O-Glucosylglycerol. Franceus J; Ubiparip Z; Beerens K; Desmet T Chembiochem; 2021 Sep; 22(18):2777-2782. PubMed ID: 33991026 [TBL] [Abstract][Full Text] [Related]
5. Production and application of a rare disaccharide using sucrose phosphorylase from Leuconostoc mesenteroides. Morimoto K; Yoshihara A; Furumoto T; Takata G J Biosci Bioeng; 2015 Jun; 119(6):652-6. PubMed ID: 25499751 [TBL] [Abstract][Full Text] [Related]
6. Recombinant sucrose phosphorylase from Leuconostoc mesenteroides: characterization, kinetic studies of transglucosylation, and application of immobilised enzyme for production of alpha-D-glucose 1-phosphate. Goedl C; Schwarz A; Minani A; Nidetzky B J Biotechnol; 2007 Mar; 129(1):77-86. PubMed ID: 17215056 [TBL] [Abstract][Full Text] [Related]
7. Pushing the boundaries of phosphorylase cascade reaction for cellobiose production I: Kinetic model development. Sigg A; Klimacek M; Nidetzky B Biotechnol Bioeng; 2024 Feb; 121(2):580-592. PubMed ID: 37983971 [TBL] [Abstract][Full Text] [Related]
8. Structural rearrangements of sucrose phosphorylase from Bifidobacterium adolescentis during sucrose conversion. Mirza O; Skov LK; Sprogøe D; van den Broek LA; Beldman G; Kastrup JS; Gajhede M J Biol Chem; 2006 Nov; 281(46):35576-84. PubMed ID: 16990265 [TBL] [Abstract][Full Text] [Related]
9. Small-molecule glucosylation by sucrose phosphorylase: structure-activity relationships for acceptor substrates revisited. Luley-Goedl C; Nidetzky B Carbohydr Res; 2010 Jul; 345(10):1492-6. PubMed ID: 20416864 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic differences among retaining disaccharide phosphorylases: insights from kinetic analysis of active site mutants of sucrose phosphorylase and alpha,alpha-trehalose phosphorylase. Goedl C; Schwarz A; Mueller M; Brecker L; Nidetzky B Carbohydr Res; 2008 Aug; 343(12):2032-40. PubMed ID: 18346723 [TBL] [Abstract][Full Text] [Related]
11. Energetics of the Glycosyl Transfer Reactions of Sucrose Phosphorylase. Vyas A; Nidetzky B Biochemistry; 2023 Jun; 62(12):1953-1963. PubMed ID: 37253063 [TBL] [Abstract][Full Text] [Related]
12. Regioselective O-glucosylation by sucrose phosphorylase: a promising route for functional diversification of a range of 1,2-propanediols. Luley-Goedl C; Sawangwan T; Brecker L; Wildberger P; Nidetzky B Carbohydr Res; 2010 Aug; 345(12):1736-40. PubMed ID: 20598292 [TBL] [Abstract][Full Text] [Related]
13. Sucrose phosphorylase from Alteromonas mediterranea: Structural insight into the regioselective α-glucosylation of (+)-catechin. Goux M; Demonceaux M; Hendrickx J; Solleux C; Lormeau E; Fredslund F; Tezé D; Offmann B; André-Miral C Biochimie; 2024 Jun; 221():13-19. PubMed ID: 38199518 [TBL] [Abstract][Full Text] [Related]
14. Asp-196-->Ala mutant of Leuconostoc mesenteroides sucrose phosphorylase exhibits altered stereochemical course and kinetic mechanism of glucosyl transfer to and from phosphate. Schwarz A; Nidetzky B FEBS Lett; 2006 Jul; 580(16):3905-10. PubMed ID: 16797542 [TBL] [Abstract][Full Text] [Related]
15. New dextransucrase purification process of the enzyme produced by Leuconostoc mesenteroides IBUN 91.2.98 based on binding product and dextranase hydrolysis. Flórez Guzman GY; Hurtado GB; Ospina SA J Biotechnol; 2018 Jan; 265():8-14. PubMed ID: 29101023 [TBL] [Abstract][Full Text] [Related]
16. Dissecting differential binding of fructose and phosphate as leaving group/nucleophile of glucosyl transfer catalyzed by sucrose phosphorylase. Mueller M; Nidetzky B FEBS Lett; 2007 Aug; 581(20):3814-8. PubMed ID: 17659283 [TBL] [Abstract][Full Text] [Related]
17. Transglucosylation potential of six sucrose phosphorylases toward different classes of acceptors. Aerts D; Verhaeghe TF; Roman BI; Stevens CV; Desmet T; Soetaert W Carbohydr Res; 2011 Sep; 346(13):1860-7. PubMed ID: 21798524 [TBL] [Abstract][Full Text] [Related]
18. Physico-chemical and transglucosylation properties of recombinant sucrose phosphorylase from Bifidobacterium adolescentis DSM20083. van den Broek LA; van Boxtel EL; Kievit RP; Verhoef R; Beldman G; Voragen AG Appl Microbiol Biotechnol; 2004 Aug; 65(2):219-27. PubMed ID: 14740189 [TBL] [Abstract][Full Text] [Related]
19. Substrate-binding recognition and specificity of trehalose phosphorylase from Schizophyllum commune examined in steady-state kinetic studies with deoxy and deoxyfluoro substrate analogues and inhibitors. Eis C; Nidetzky B Biochem J; 2002 Apr; 363(Pt 2):335-40. PubMed ID: 11931662 [TBL] [Abstract][Full Text] [Related]
20. Kinetic study of a thermostable beta-glycosidase of Thermus thermophilus. Effects of temperature and glucose on hydrolysis and transglycosylation reactions. Fourage L; Dion M; Colas B Glycoconj J; 2000 Jun; 17(6):377-83. PubMed ID: 11294503 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]