These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32574047)

  • 1. Relativistic Heavy-Neighbor-Atom Effects on NMR Shifts: Concepts and Trends Across the Periodic Table.
    Vı Cha J; Novotný J; Komorovsky S; Straka M; Kaupp M; Marek R
    Chem Rev; 2020 Aug; 120(15):7065-7103. PubMed ID: 32574047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relativistic Spin-Orbit Heavy Atom on the Light Atom NMR Chemical Shifts: General Trends Across the Periodic Table Explained.
    Vícha J; Komorovsky S; Repisky M; Marek R; Straka M
    J Chem Theory Comput; 2018 Jun; 14(6):3025-3039. PubMed ID: 29676906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and Theoretical Evidence of Spin-Orbit Heavy Atom on the Light Atom
    Vícha J; Švec P; Růžičková Z; Samsonov MA; Bártová K; Růžička A; Straka M; Dračínský M
    Chemistry; 2020 Jul; 26(40):8698-8702. PubMed ID: 32297684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of Spin-Orbit Effects on the Ligand NMR Chemical Shift in Transition-Metal Complexes: Linking NMR to EPR.
    Vícha J; Straka M; Munzarová ML; Marek R
    J Chem Theory Comput; 2014 Apr; 10(4):1489-99. PubMed ID: 26580365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.
    Lantto P; Romero RH; Gómez SS; Aucar GA; Vaara J
    J Chem Phys; 2006 Nov; 125(18):184113. PubMed ID: 17115744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relativistic Spin-Orbit Electronegativity and the Chemical Bond Between a Heavy Atom and a Light Atom.
    Cuyacot BJR; Novotný J; Berger RJF; Komorovsky S; Marek R
    Chemistry; 2022 Apr; 28(24):e202200277. PubMed ID: 35229922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relativistic heavy atom effect on the
    Rusakov YY; Rusakova IL; Krivdin LB
    Magn Reson Chem; 2018 Nov; 56(11):1061-1073. PubMed ID: 29775489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Utmost Importance of the Basis Set Choice for the Calculations of the Relativistic Corrections to NMR Shielding Constants.
    Rusakova IL; Rusakov YY
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Scope of the Applicability of Non-relativistic DFT Calculations of NMR Chemical Shifts in Pyridine-Metal Complexes for Applied Applications.
    Shenderovich IG
    Chemphyschem; 2024 Apr; 25(7):e202300986. PubMed ID: 38259119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning-based correction for spin-orbit coupling effects in NMR chemical shift calculations.
    Kleine Büning JB; Grimme S; Bursch M
    Phys Chem Chem Phys; 2024 Feb; 26(6):4870-4884. PubMed ID: 38230684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring new 129Xe chemical shift ranges in HXeY compounds: hydrogen more relativistic than xenon.
    Lantto P; Standara S; Riedel S; Vaara J; Straka M
    Phys Chem Chem Phys; 2012 Aug; 14(31):10944-52. PubMed ID: 22782133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Frequency
    Vícha J; Marek R; Straka M
    Inorg Chem; 2016 Oct; 55(20):10302-10309. PubMed ID: 27681471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.
    Schreckenbach G
    Inorg Chem; 2002 Dec; 41(25):6560-72. PubMed ID: 12470051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate prediction of 195Pt NMR chemical shifts for a series of Pt(II) and Pt(IV) antitumor agents by a non-relativistic DFT computational protocol.
    Tsipis AC; Karapetsas IN
    Dalton Trans; 2014 Apr; 43(14):5409-26. PubMed ID: 24519094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MP2 calculation of (77) Se NMR chemical shifts taking into account relativistic corrections.
    Rusakov YY; Rusakova IL; Krivdin LB
    Magn Reson Chem; 2015 Jul; 53(7):485-92. PubMed ID: 25998325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Frequency (13)C and (29)Si NMR Chemical Shifts in Diamagnetic Low-Valence Compounds of Tl(I) and Pb(II): Decisive Role of Relativistic Effects.
    Vícha J; Marek R; Straka M
    Inorg Chem; 2016 Feb; 55(4):1770-81. PubMed ID: 26820039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the NMR chemical shifts for 6-halopurines: role of structure, solvent and relativistic effects.
    Standara S; Malináková K; Marek R; Marek J; Hocek M; Vaara J; Straka M
    Phys Chem Chem Phys; 2010 May; 12(19):5126-39. PubMed ID: 20445915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rovibrational effects on NMR shieldings in a heavy-element system: XeF2.
    Lantto P; Kangasvieri S; Vaara J
    J Chem Phys; 2012 Dec; 137(21):214309. PubMed ID: 23231233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.
    Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP
    J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Halogen effect on structure and 13C NMR chemical shift of 3,6-disubstituted-N-alkyl carbazoles.
    Radula-Janik K; Kupka T; Ejsmont K; Daszkiewicz Z; Sauer SP
    Magn Reson Chem; 2013 Oct; 51(10):630-5. PubMed ID: 23922027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.