These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32574047)

  • 41. Study of heavy atom influence on poly-halogenated compounds using DP4/MM-DP4+/DP4+: insights and trends.
    Passaglia L; Zanardi MM; Sarotti AM
    Org Biomol Chem; 2024 Mar; 22(12):2435-2442. PubMed ID: 38416037
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Influence of a Presence of a Heavy Atom on (13)C Shielding Constants in Organomercury Compounds and Halogen Derivatives.
    Wodyński A; Gryff-Keller A; Pecul M
    J Chem Theory Comput; 2013 Apr; 9(4):1909-17. PubMed ID: 26583542
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Relativistic DFT Calculation of (119)Sn Chemical Shifts and Coupling Constants in Tin Compounds.
    Bagno A; Casella G; Saielli G
    J Chem Theory Comput; 2006 Jan; 2(1):37-46. PubMed ID: 26626377
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Giant spin-orbit effects on
    Greif AH; Hrobárik P; Autschbach J; Kaupp M
    Phys Chem Chem Phys; 2016 Nov; 18(44):30462-30474. PubMed ID: 27781214
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Relativistic spin-orbit coupling effects on secondary isotope shifts of (13)C nuclear shielding in CX(2) (X = O, S, Se, Te).
    Lantto P; Vaara J; Kantola AM; Telkki VV; Schimmelpfennig B; Ruud K; Jokisaari J
    J Am Chem Soc; 2002 Mar; 124(11):2762-71. PubMed ID: 11890828
    [TBL] [Abstract][Full Text] [Related]  

  • 46. NMR Shielding Tensors and Chemical Shifts in Scalar-Relativistic Local Exact Two-Component Theory.
    Franzke YJ; Weigend F
    J Chem Theory Comput; 2019 Feb; 15(2):1028-1043. PubMed ID: 30620588
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Atomic contributions from spin-orbit coupling to 29Si NMR chemical shifts in metallasilatrane complexes.
    Autschbach J; Sutter K; Truflandier LA; Brendler E; Wagler J
    Chemistry; 2012 Oct; 18(40):12803-13. PubMed ID: 22930544
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A fully relativistic method for calculation of nuclear magnetic shielding tensors with a restricted magnetically balanced basis in the framework of the matrix Dirac-Kohn-Sham equation.
    Komorovský S; Repiský M; Malkina OL; Malkin VG; Malkin Ondík I; Kaupp M
    J Chem Phys; 2008 Mar; 128(10):104101. PubMed ID: 18345871
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Relativity and the periodic table.
    Pyper NC
    Philos Trans A Math Phys Eng Sci; 2020 Sep; 378(2180):20190305. PubMed ID: 32811360
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Relativistic environmental effects in (29)Si NMR chemical shifts of halosilanes: light nucleus, heavy environment.
    Fedorov SV; Rusakov YY; Krivdin LB
    J Phys Chem A; 2015 Jun; 119(22):5778-89. PubMed ID: 25946056
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On the long-range relativistic effects in the
    Samultsev DO; Rusakov YY; Krivdin LB
    Magn Reson Chem; 2017 Nov; 55(11):990-995. PubMed ID: 28557069
    [TBL] [Abstract][Full Text] [Related]  

  • 52. "Through-Space" Relativistic Effects on NMR Chemical Shifts of Pyridinium Halide Ionic Liquids.
    Ariai J; Saielli G
    Chemphyschem; 2019 Jan; 20(1):108-115. PubMed ID: 30312005
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Platinum-modified adenines: unprecedented protonation behavior revealed by NMR spectroscopy and relativistic density-functional theory calculations.
    Vícha J; Demo G; Marek R
    Inorg Chem; 2012 Feb; 51(3):1371-9. PubMed ID: 22260420
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comparison of two-component and four-component approaches for calculations of spin-spin coupling constants and NMR shielding constants of transition metal cyanides.
    Wodyński A; Repiský M; Pecul M
    J Chem Phys; 2012 Jul; 137(1):014311. PubMed ID: 22779652
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantum-chemical analyses of aromaticity, UV spectra, and NMR chemical shifts in plumbacyclopentadienylidenes stabilized by Lewis bases.
    Kawamura T; Abe M; Saito M; Hada M
    J Comput Chem; 2014 Apr; 35(11):847-53. PubMed ID: 24643814
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Relativistic effects on the NMR parameters of Si, Ge, Sn, and Pb alkynyl compounds: Scalar versus spin-orbit effects.
    Demissie TB
    J Chem Phys; 2017 Nov; 147(17):174301. PubMed ID: 29117685
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Towards the versatile DFT and MP2 computational schemes for 31P NMR chemical shifts taking into account relativistic corrections.
    Fedorov SV; Rusakov YY; Krivdin LB
    Magn Reson Chem; 2014 Nov; 52(11):699-710. PubMed ID: 25155415
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An investigation of lanthanum coordination compounds by using solid-state 139La NMR spectroscopy and relativistic density functional theory.
    Willans MJ; Feindel KW; Ooms KJ; Wasylishen RE
    Chemistry; 2005 Dec; 12(1):159-68. PubMed ID: 16224769
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhancing NMR Quantum Computation by Exploring Heavy Metal Complexes as Multiqubit Systems: A Theoretical Investigation.
    Lino JBDR; Sauer SPA; Ramalho TC
    J Phys Chem A; 2020 Jun; 124(24):4946-4955. PubMed ID: 32463687
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hyperfine Effects in Ligand NMR: Paramagnetic Ru(III) Complexes with 3-Substituted Pyridines.
    Novotný J; Přichystal D; Sojka M; Komorovsky S; Nečas M; Marek R
    Inorg Chem; 2018 Jan; 57(2):641-652. PubMed ID: 29185727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.