These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
385 related articles for article (PubMed ID: 32574052)
1. Conductive Hydrogels-A Novel Material: Recent Advances and Future Perspectives. Liu K; Wei S; Song L; Liu H; Wang T J Agric Food Chem; 2020 Jul; 68(28):7269-7280. PubMed ID: 32574052 [TBL] [Abstract][Full Text] [Related]
2. Preparation of stretchable and self-healable dual ionically cross-linked hydrogel based on chitosan/polyacrylic acid with anti-freezing property for multi-model flexible sensing and detection. Liang Y; Shen Y; Sun X; Liang H Int J Biol Macromol; 2021 Dec; 193(Pt A):629-637. PubMed ID: 34717973 [TBL] [Abstract][Full Text] [Related]
3. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application. Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274 [TBL] [Abstract][Full Text] [Related]
4. A short review on the synthesis and advance applications of polyaniline hydrogels. Mir A; Kumar A; Riaz U RSC Adv; 2022 Jun; 12(30):19122-19132. PubMed ID: 35865573 [TBL] [Abstract][Full Text] [Related]
5. Self-healing conductive hydrogels: preparation, properties and applications. Deng Z; Wang H; Ma PX; Guo B Nanoscale; 2020 Jan; 12(3):1224-1246. PubMed ID: 31859313 [TBL] [Abstract][Full Text] [Related]
6. Polypyrrole-Doped Conductive Self-Healing Composite Hydrogels with High Toughness and Stretchability. Zhao L; Li X; Li Y; Wang X; Yang W; Ren J Biomacromolecules; 2021 Mar; 22(3):1273-1281. PubMed ID: 33596651 [TBL] [Abstract][Full Text] [Related]
7. Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding. Wang H; Li Z; Zuo M; Zeng X; Tang X; Sun Y; Lin L Carbohydr Polym; 2022 Mar; 280():119018. PubMed ID: 35027123 [TBL] [Abstract][Full Text] [Related]
8. Polypyrrole-doped conductive self-healing multifunctional composite hydrogels with a dual crosslinked network. Wang X; Li X; Zhao L; Li M; Li Y; Yang W; Ren J Soft Matter; 2021 Sep; 17(36):8363-8372. PubMed ID: 34550157 [TBL] [Abstract][Full Text] [Related]
9. Development of Conductive Hydrogels for Fabricating Flexible Strain Sensors. Li G; Li C; Li G; Yu D; Song Z; Wang H; Liu X; Liu H; Liu W Small; 2022 Feb; 18(5):e2101518. PubMed ID: 34658130 [TBL] [Abstract][Full Text] [Related]
10. Stimuli-Responsive Conductive Nanocomposite Hydrogels with High Stretchability, Self-Healing, Adhesiveness, and 3D Printability for Human Motion Sensing. Deng Z; Hu T; Lei Q; He J; Ma PX; Guo B ACS Appl Mater Interfaces; 2019 Feb; 11(7):6796-6808. PubMed ID: 30673228 [TBL] [Abstract][Full Text] [Related]
11. A Multifunctional, Self-Healing, Self-Adhesive, and Conductive Sodium Alginate/Poly(vinyl alcohol) Composite Hydrogel as a Flexible Strain Sensor. Zhao L; Ren Z; Liu X; Ling Q; Li Z; Gu H ACS Appl Mater Interfaces; 2021 Mar; 13(9):11344-11355. PubMed ID: 33620195 [TBL] [Abstract][Full Text] [Related]
12. Recent advances in conductive polymer hydrogel composites and nanocomposites for flexible electrochemical supercapacitors. Li L; Meng J; Zhang M; Liu T; Zhang C Chem Commun (Camb); 2021 Dec; 58(2):185-207. PubMed ID: 34881748 [TBL] [Abstract][Full Text] [Related]
13. Ultrastretchable, Antifreezing, and High-Performance Strain Sensor Based on a Muscle-Inspired Anisotropic Conductive Hydrogel for Human Motion Monitoring and Wireless Transmission. Chen L; Chang X; Chen J; Zhu Y ACS Appl Mater Interfaces; 2022 Sep; 14(38):43833-43843. PubMed ID: 36112731 [TBL] [Abstract][Full Text] [Related]
14. Irreversible and Self-Healing Electrically Conductive Hydrogels Made of Bio-Based Polymers. Nada AA; Eckstein Andicsová A; Mosnáček J Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055029 [TBL] [Abstract][Full Text] [Related]
15. Multifunctional hybrid hydrogel with transparency, conductivity, and self-adhesion for soft sensors using hemicellulose-decorated polypyrrole as a conductive matrix. Zhang W; Wen J; Yang J; Li M; Peng F; Ma M; Bian J Int J Biol Macromol; 2022 Dec; 223(Pt A):1-10. PubMed ID: 36336151 [TBL] [Abstract][Full Text] [Related]
16. Facile One-Pot Preparation of Polypyrrole-Incorporated Conductive Hydrogels for Human Motion Sensing. Zhao Z; Liu J; Lv J; Liu B; Li N; Zhang H Sensors (Basel); 2024 Sep; 24(17):. PubMed ID: 39275724 [TBL] [Abstract][Full Text] [Related]
17. Tunable, conductive, self-healing, adhesive and injectable hydrogels for bioelectronics and tissue regeneration applications. Panwar V; Babu A; Sharma A; Thomas J; Chopra V; Malik P; Rajput S; Mittal M; Guha R; Chattopadhyay N; Mandal D; Ghosh D J Mater Chem B; 2021 Aug; 9(31):6260-6270. PubMed ID: 34338263 [TBL] [Abstract][Full Text] [Related]
18. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors - A review. Distler T; Boccaccini AR Acta Biomater; 2020 Jan; 101():1-13. PubMed ID: 31476385 [TBL] [Abstract][Full Text] [Related]
19. Ultra-stretchable and conductive polyacrylamide/carboxymethyl chitosan composite hydrogels with low modulus and fast self-recoverability as flexible strain sensors. Ding H; Liu J; Huo P; Ding R; Shen X; Mao H; Wen Y; Li H; Wu ZL Int J Biol Macromol; 2023 Dec; 253(Pt 5):127146. PubMed ID: 37778581 [TBL] [Abstract][Full Text] [Related]
20. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]