These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32574214)

  • 1. Plasticity of adult coralline algae to prolonged increased temperature and pCO2 exposure but reduced survival in their first generation.
    Page TM; Diaz-Pulido G
    PLoS One; 2020; 15(6):e0235125. PubMed ID: 32574214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcifying algae maintain settlement cues to larval abalone following algal exposure to extreme ocean acidification.
    O'Leary JK; Barry JP; Gabrielson PW; Rogers-Bennett L; Potts DC; Palumbi SR; Micheli F
    Sci Rep; 2017 Jul; 7(1):5774. PubMed ID: 28720836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic stability or lability explains sensitivity to climate stressors in coralline algae.
    Page TM; McDougall C; Bar I; Diaz-Pulido G
    BMC Genomics; 2022 Oct; 23(1):729. PubMed ID: 36303112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions.
    Doropoulos C; Ward S; Diaz-Pulido G; Hoegh-Guldberg O; Mumby PJ
    Ecol Lett; 2012 Apr; 15(4):338-46. PubMed ID: 22321314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A possible link between coral reef success, crustose coralline algae and the evolution of herbivory.
    Teichert S; Steinbauer M; Kiessling W
    Sci Rep; 2020 Oct; 10(1):17748. PubMed ID: 33082388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification.
    Webster NS; Negri AP; Botté ES; Laffy PW; Flores F; Noonan S; Schmidt C; Uthicke S
    Sci Rep; 2016 Jan; 6():19324. PubMed ID: 26758800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactive effects of temperature and pCO
    Bennett HM; Altenrath C; Woods L; Davy SK; Webster NS; Bell JJ
    Glob Chang Biol; 2017 May; 23(5):2031-2046. PubMed ID: 27550825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical settlement behaviours of coral larvae to common coralline algae.
    Abdul Wahab MA; Ferguson S; Snekkevik VK; McCutchan G; Jeong S; Severati A; Randall CJ; Negri AP; Diaz-Pulido G
    Sci Rep; 2023 Apr; 13(1):5795. PubMed ID: 37032381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coralline algal metabolites induce settlement and mediate the inductive effect of epiphytic microbes on coral larvae.
    Gómez-Lemos LA; Doropoulos C; Bayraktarov E; Diaz-Pulido G
    Sci Rep; 2018 Dec; 8(1):17557. PubMed ID: 30510183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ changes of tropical crustose coralline algae along carbon dioxide gradients.
    Fabricius KE; Kluibenschedl A; Harrington L; Noonan S; De'ath G
    Sci Rep; 2015 Apr; 5():9537. PubMed ID: 25835382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ocean acidification reduces induction of coral settlement by crustose coralline algae.
    Webster NS; Uthicke S; Botté ES; Flores F; Negri AP
    Glob Chang Biol; 2013 Jan; 19(1):303-15. PubMed ID: 23504741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inorganic carbon uptake strategies in coralline algae: Plasticity across evolutionary lineages under ocean acidification and warming.
    Bergstrom E; Ordoñez A; Ho M; Hurd C; Fry B; Diaz-Pulido G
    Mar Environ Res; 2020 Oct; 161():105107. PubMed ID: 32890983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recruitment of crustose coralline algae on tiles material for monitoring coral larvae settlement's consolidators at Nature Reserve Pulau Sempu, East Java, Indonesia.
    Guntur ; Luthfi OM; Asadi MA
    Braz J Biol; 2021; 83():e245922. PubMed ID: 34468513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Warming may increase the vulnerability of calcareous algae to bioinvasions.
    Cebrian E; Linares C; Garrabou J
    Mar Pollut Bull; 2021 Dec; 173(Pt B):113099. PubMed ID: 34798431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts of ocean acidification on early life-history stages and settlement of the coral-eating sea star Acanthaster planci.
    Uthicke S; Pecorino D; Albright R; Negri AP; Cantin N; Liddy M; Dworjanyn S; Kamya P; Byrne M; Lamare M
    PLoS One; 2013; 8(12):e82938. PubMed ID: 24358240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced spore germination explains sensitivity of reef-building algae to climate change stressors.
    Ordoñez A; Kennedy EV; Diaz-Pulido G
    PLoS One; 2017; 12(12):e0189122. PubMed ID: 29206887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low recruitment due to altered settlement substrata as primary constraint for coral communities under ocean acidification.
    Fabricius KE; Noonan SHC; Abrego D; Harrington L; De'ath G
    Proc Biol Sci; 2017 Sep; 284(1862):. PubMed ID: 28904144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Threatened Caribbean coral is able to mitigate the adverse effects of ocean acidification on calcification by increasing feeding rate.
    Towle EK; Enochs IC; Langdon C
    PLoS One; 2015; 10(4):e0123394. PubMed ID: 25874963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated seawater temperature causes a microbial shift on crustose coralline algae with implications for the recruitment of coral larvae.
    Webster NS; Soo R; Cobb R; Negri AP
    ISME J; 2011 Apr; 5(4):759-70. PubMed ID: 20944682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High diversity of coralline algae in New Zealand revealed: Knowledge gaps and implications for future research.
    Twist BA; Neill KF; Bilewitch J; Jeong SY; Sutherland JE; Nelson WA
    PLoS One; 2019; 14(12):e0225645. PubMed ID: 31790447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.