These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 32574498)

  • 21. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon.
    Schaibley JR; Burgers AP; McCracken GA; Duan LM; Berman PR; Steel DG; Bracker AS; Gammon D; Sham LJ
    Phys Rev Lett; 2013 Apr; 110(16):167401. PubMed ID: 23679636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deterministic coupling of site-controlled quantum emitters in monolayer WSe
    Luo Y; Shepard GD; Ardelean JV; Rhodes DA; Kim B; Barmak K; Hone JC; Strauf S
    Nat Nanotechnol; 2018 Dec; 13(12):1137-1142. PubMed ID: 30374160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Observation of entanglement between a quantum dot spin and a single photon.
    Gao WB; Fallahi P; Togan E; Miguel-Sanchez J; Imamoglu A
    Nature; 2012 Nov; 491(7424):426-30. PubMed ID: 23151586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoassembly of quantum emitters in hexagonal boron nitride and gold nanospheres.
    Nguyen M; Kim S; Tran TT; Xu ZQ; Kianinia M; Toth M; Aharonovich I
    Nanoscale; 2018 Feb; 10(5):2267-2274. PubMed ID: 29319710
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip.
    Silverstone JW; Santagati R; Bonneau D; Strain MJ; Sorel M; O'Brien JL; Thompson MG
    Nat Commun; 2015 Aug; 6():7948. PubMed ID: 26245267
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-Photon Excitation Sets Limit to Entangled Photon Pair Generation from Quantum Emitters.
    Seidelmann T; Schimpf C; Bracht TK; Cosacchi M; Vagov A; Rastelli A; Reiter DE; Axt VM
    Phys Rev Lett; 2022 Nov; 129(19):193604. PubMed ID: 36399754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct measurement of nonlocal entanglement of two-qubit spin quantum states.
    Cheng LY; Yang GH; Guo Q; Wang HF; Zhang S
    Sci Rep; 2016 Jan; 6():19482. PubMed ID: 26778340
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond.
    Zhang JL; Sun S; Burek MJ; Dory C; Tzeng YK; Fischer KA; Kelaita Y; Lagoudakis KG; Radulaski M; Shen ZX; Melosh NA; Chu S; Lončar M; Vučković J
    Nano Lett; 2018 Feb; 18(2):1360-1365. PubMed ID: 29377701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Entanglement of single-atom quantum bits at a distance.
    Moehring DL; Maunz P; Olmschenk S; Younge KC; Matsukevich DN; Duan LM; Monroe C
    Nature; 2007 Sep; 449(7158):68-71. PubMed ID: 17805290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frequency Control of Single Quantum Emitters in Integrated Photonic Circuits.
    Schmidgall ER; Chakravarthi S; Gould M; Christen IR; Hestroffer K; Hatami F; Fu KC
    Nano Lett; 2018 Feb; 18(2):1175-1179. PubMed ID: 29381364
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum entanglement in plasmonic waveguides with near-zero mode indices.
    Jin XR; Sun L; Yang X; Gao J
    Opt Lett; 2013 Oct; 38(20):4078-81. PubMed ID: 24321927
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuning Spontaneous Emission through Waveguide Cavity Effects in Semiconductor Nanowires.
    Dirnberger F; Abujetas D; König J; Forsch M; Koller T; Gronwald I; Lange C; Huber R; Schüller C; Korn T; Sánchez-Gil J; Bougeard D
    Nano Lett; 2019 Oct; 19(10):7287-7292. PubMed ID: 31525062
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters.
    Reindl M; Jöns KD; Huber D; Schimpf C; Huo Y; Zwiller V; Rastelli A; Trotta R
    Nano Lett; 2017 Jul; 17(7):4090-4095. PubMed ID: 28557459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanistic understanding of entanglement and heralding in cascade emitters.
    N Avanaki K; Schatz GC
    J Chem Phys; 2021 Jan; 154(2):024304. PubMed ID: 33445913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of entanglement measures and LOCC maximized quantum Fisher information of general two qubit systems.
    Erol V; Ozaydin F; Altintas AA
    Sci Rep; 2014 Jun; 4():5422. PubMed ID: 24957694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exciting a Bound State in the Continuum through Multiphoton Scattering Plus Delayed Quantum Feedback.
    Calajó G; Fang YL; Baranger HU; Ciccarello F
    Phys Rev Lett; 2019 Feb; 122(7):073601. PubMed ID: 30848634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation of entangled-photons by a quantum dot cascade source in polarized cavities: Using cavity resonances to boost signals and preserve the entanglements.
    Nasiri Avanaki K; Schatz GC
    J Chem Phys; 2023 Apr; 158(14):144106. PubMed ID: 37061505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Entanglement protection of classically driven qubits in a lossy cavity.
    Nourmandipour A; Vafafard A; Mortezapour A; Franzosi R
    Sci Rep; 2021 Aug; 11(1):16259. PubMed ID: 34376732
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities.
    Liberal I; Engheta N
    Sci Adv; 2016 Oct; 2(10):e1600987. PubMed ID: 27819047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.