These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 32574502)

  • 1. Optical Potential-Well Array for High-Selectivity, Massive Trapping and Sorting at Nanoscale.
    Shi Y; Zhao H; Chin LK; Zhang Y; Yap PH; Ser W; Qiu CW; Liu AQ
    Nano Lett; 2020 Jul; 20(7):5193-5200. PubMed ID: 32574502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creating Multifunctional Optofluidic Potential Wells for Nanoparticle Manipulation.
    Nan F; Yan Z
    Nano Lett; 2018 Nov; 18(11):7400-7406. PubMed ID: 30351963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorting Metal Nanoparticles with Dynamic and Tunable Optical Driven Forces.
    Nan F; Yan Z
    Nano Lett; 2018 Jul; 18(7):4500-4505. PubMed ID: 29939760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Zemánek P
    Opt Express; 2015 Apr; 23(7):8179-89. PubMed ID: 25968657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Sorting at the Single-Particle Level with Single-Nanometer Precision Using Coordinated Intensity and Phase Gradient Forces.
    Nan F; Yan Z
    ACS Nano; 2020 Jun; 14(6):7602-7609. PubMed ID: 32428394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Single Large Assembly with Dynamically Fluctuating Swarms of Gold Nanoparticles Formed by Trapping Laser.
    Kudo T; Yang SJ; Masuhara H
    Nano Lett; 2018 Sep; 18(9):5846-5853. PubMed ID: 30071730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and Operation of a Nano-Optical Conveyor Belt.
    Ryan J; Zheng Y; Hansen P; Hesselink L
    J Vis Exp; 2015 Aug; (102):e52842. PubMed ID: 26381708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers.
    Wu MY; Ling DX; Ling L; Li W; Li YQ
    Sci Rep; 2017 Feb; 7():42930. PubMed ID: 28211526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Sci Rep; 2016 Dec; 6():38086. PubMed ID: 27905527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomanipulation using silicon photonic crystal resonators.
    Mandal S; Serey X; Erickson D
    Nano Lett; 2010 Jan; 10(1):99-104. PubMed ID: 19957918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures.
    Saleh AA; Dionne JA
    Nano Lett; 2012 Nov; 12(11):5581-6. PubMed ID: 23035765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structured light spots projected by a Dammann grating with high power efficiency and uniformity for optical sorting.
    Sun X; Sun Y; Bu J; Zhu S; Yuan XC
    Appl Opt; 2010 Oct; 49(28):5437-43. PubMed ID: 20885481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fano-Resonant, Asymmetric, Metamaterial-Assisted Tweezers for Single Nanoparticle Trapping.
    Kotsifaki DG; Truong VG; Chormaic SN
    Nano Lett; 2020 May; 20(5):3388-3395. PubMed ID: 32275440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large Submillimeter Assembly of Microparticles with Necklace-like Patterns Formed by Laser Trapping at Solution Surface.
    Lu JS; Wang HY; Kudo T; Masuhara H
    J Phys Chem Lett; 2020 Aug; 11(15):6057-6062. PubMed ID: 32658483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Manipulation and Spectroscopy Of Silicon Nanoparticles Exhibiting Dielectric Resonances.
    Andres-Arroyo A; Gupta B; Wang F; Gooding JJ; Reece PJ
    Nano Lett; 2016 Mar; 16(3):1903-10. PubMed ID: 26848883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and efficient nanoparticle trapping using plasmonic connected nanoring apertures.
    Bouloumis TD; Kotsifaki DG; Han X; Chormaic SN; Truong VG
    Nanotechnology; 2021 Jan; 32(2):025507. PubMed ID: 32992307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array.
    Li Y; Xin H; Liu X; Zhang Y; Lei H; Li B
    ACS Nano; 2016 Jun; 10(6):5800-8. PubMed ID: 27163754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatible and High Stiffness Nanophotonic Trap Array for Precise and Versatile Manipulation.
    Ye F; Badman RP; Inman JT; Soltani M; Killian JL; Wang MD
    Nano Lett; 2016 Oct; 16(10):6661-6667. PubMed ID: 27689302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opto-thermophoretic separation and trapping of plasmonic nanoparticles.
    Setoura K; Tsuji T; Ito S; Kawano S; Miyasaka H
    Nanoscale; 2019 Nov; 11(44):21093-21102. PubMed ID: 31402358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Luminescent nanoparticle trapping with far-field optical fiber-tip tweezers.
    Decombe JB; Valdivia-Valero FJ; Dantelle G; Leménager G; Gacoin T; Colas des Francs G; Huant S; Fick J
    Nanoscale; 2016 Mar; 8(9):5334-42. PubMed ID: 26883602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.