BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32574558)

  • 1. CALX-CBD1 Ca
    Cardoso MVC; Rivera JD; Vitale PAM; Degenhardt MFS; Abiko LA; Oliveira CLP; Salinas RK
    Biophys J; 2020 Jul; 119(2):337-348. PubMed ID: 32574558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of progressive Ca2+ binding states of the Ca2+ sensor Ca2+ binding domain 1 (CBD1) from the CALX Na+/Ca2+ exchanger reveal incremental conformational transitions.
    Wu M; Le HD; Wang M; Yurkov V; Omelchenko A; Hnatowich M; Nix J; Hryshko LV; Zheng L
    J Biol Chem; 2010 Jan; 285(4):2554-61. PubMed ID: 19815561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural studies of the Ca(2+) regulatory domain of Drosophila Na(+)/Ca (2+) exchanger CALX.
    Zheng L; Wu M; Tong S
    Adv Exp Med Biol; 2013; 961():55-63. PubMed ID: 23224870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+ regulation in the Na+/Ca2+ exchanger features a dual electrostatic switch mechanism.
    Hilge M; Aelen J; Foarce A; Perrakis A; Vuister GW
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14333-8. PubMed ID: 19667209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model for the allosteric regulation of the Na+/Ca2+ exchanger NCX.
    Abiko LA; Vitale PM; Favaro DC; Hauk P; Li DW; Yuan J; Bruschweiler-Li L; Salinas RK; Brüschweiler R
    Proteins; 2016 May; 84(5):580-90. PubMed ID: 26850381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of the Ca2+ inhibitory mechanism of Drosophila Na+/Ca2+ exchanger CALX and its modification by alternative splicing.
    Wu M; Tong S; Gonzalez J; Jayaraman V; Spudich JL; Zheng L
    Structure; 2011 Oct; 19(10):1509-17. PubMed ID: 22000518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular insights on CALX-CBD12 interdomain dynamics from MD simulations, RDCs, and SAXS.
    de Souza Degenhardt MF; Vitale PAM; Abiko LA; Zacharias M; Sattler M; Oliveira CLP; Salinas RK
    Biophys J; 2021 Sep; 120(17):3664-3675. PubMed ID: 34310942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of CBD2 from the Drosophila Na(+)/Ca(2+) exchanger: diversity of Ca(2+) regulation and its alternative splicing modification.
    Wu M; Wang M; Nix J; Hryshko LV; Zheng L
    J Mol Biol; 2009 Mar; 387(1):104-12. PubMed ID: 19361442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+ regulation of ion transport in the Na+/Ca2+ exchanger.
    Hilge M
    J Biol Chem; 2012 Sep; 287(38):31641-9. PubMed ID: 22822067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Essential role of the CBD1-CBD2 linker in slow dissociation of Ca2+ from the regulatory two-domain tandem of NCX1.
    Giladi M; Boyman L; Mikhasenko H; Hiller R; Khananshvili D
    J Biol Chem; 2010 Sep; 285(36):28117-25. PubMed ID: 20587421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A common Ca2+-driven interdomain module governs eukaryotic NCX regulation.
    Giladi M; Sasson Y; Fang X; Hiller R; Buki T; Wang YX; Hirsch JA; Khananshvili D
    PLoS One; 2012; 7(6):e39985. PubMed ID: 22768191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calx, a Na-Ca exchanger gene of Drosophila melanogaster.
    Schwarz EM; Benzer S
    Proc Natl Acad Sci U S A; 1997 Sep; 94(19):10249-54. PubMed ID: 9294196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-dynamic determinants governing a mode of regulatory response and propagation of allosteric signal in splice variants of Na+/Ca2+ exchange (NCX) proteins.
    Giladi M; Lee SY; Hiller R; Chung KY; Khananshvili D
    Biochem J; 2015 Feb; 465(3):489-501. PubMed ID: 25387769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and functional analysis of a Ca2+ sensor mutant of the Na+/Ca2+ exchanger.
    Chaptal V; Ottolia M; Mercado-Besserer G; Nicoll DA; Philipson KD; Abramson J
    J Biol Chem; 2009 May; 284(22):14688-92. PubMed ID: 19332552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca(2+) regulation in the Na(+)/Ca (2+) exchanger features a dual electrostatic switch mechanism.
    Hilge M
    Adv Exp Med Biol; 2013; 961():27-33. PubMed ID: 23224867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Release of Ca
    Liu CH; Chen Z; Oliva MK; Luo J; Collier S; Montell C; Hardie RC
    J Neurosci; 2020 Apr; 40(16):3152-3164. PubMed ID: 32156830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+ regulation in the Na+/Ca2+ exchanger involves two markedly different Ca2+ sensors.
    Hilge M; Aelen J; Vuister GW
    Mol Cell; 2006 Apr; 22(1):15-25. PubMed ID: 16600866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of two Ca2+-binding domains in regulation of the cardiac Na+-Ca2+ exchanger.
    Ottolia M; Nicoll DA; Philipson KD
    J Biol Chem; 2009 Nov; 284(47):32735-41. PubMed ID: 19801651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural arrangement of the intracellular Ca2+ binding domains of the cardiac Na+/Ca2+ exchanger (NCX1.1): effects of Ca2+ binding.
    Dixit M; Kim S; Matthews GF; Erreger K; Galli A; Cobb CE; Hustedt EJ; Beth AH
    J Biol Chem; 2013 Feb; 288(6):4194-207. PubMed ID: 23233681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light activation, adaptation, and cell survival functions of the Na+/Ca2+ exchanger CalX.
    Wang T; Xu H; Oberwinkler J; Gu Y; Hardie RC; Montell C
    Neuron; 2005 Feb; 45(3):367-78. PubMed ID: 15694324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.