BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32574793)

  • 1. Engineered dynamic distribution of malonyl-CoA flux for improving polyketide biosynthesis in Komagataella phaffii.
    Wen J; Tian L; Liu Q; Zhang Y; Cai M
    J Biotechnol; 2020 Aug; 320():80-85. PubMed ID: 32574793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Synthetic Malonyl-CoA Metabolic Oscillator in
    Wen J; Tian L; Xu M; Zhou X; Zhang Y; Cai M
    ACS Synth Biol; 2020 May; 9(5):1059-1068. PubMed ID: 32227991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Genetically Encoded Biosensor for Detection of Polyketide Synthase Extender Units in Escherichia coli.
    Kalkreuter E; Keeler AM; Malico AA; Bingham KS; Gayen AK; Williams GJ
    ACS Synth Biol; 2019 Jun; 8(6):1391-1400. PubMed ID: 31134799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli.
    Xu P; Wang W; Li L; Bhan N; Zhang F; Koffas MA
    ACS Chem Biol; 2014 Feb; 9(2):451-8. PubMed ID: 24191643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding the Dynamic Range of a Transcription Factor-Based Biosensor in
    Dabirian Y; Li X; Chen Y; David F; Nielsen J; Siewers V
    ACS Synth Biol; 2019 Sep; 8(9):1968-1975. PubMed ID: 31373795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and application of genetically-encoded malonyl-CoA biosensors for metabolic engineering of microbial cell factories.
    Johnson AO; Gonzalez-Villanueva M; Wong L; Steinbüchel A; Tee KL; Xu P; Wong TS
    Metab Eng; 2017 Nov; 44():253-264. PubMed ID: 29097310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering intracellular malonyl-CoA availability in microbial hosts and its impact on polyketide and fatty acid synthesis.
    Milke L; Marienhagen J
    Appl Microbiol Biotechnol; 2020 Jul; 104(14):6057-6065. PubMed ID: 32385515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetically Encoded FapR-NLuc as a Biosensor to Determine Malonyl-CoA in Situ at Subcellular Scales.
    Du Y; Hu H; Pei X; Du K; Wei T
    Bioconjug Chem; 2019 Mar; 30(3):826-832. PubMed ID: 30629412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flux Control at the Malonyl-CoA Node through Hierarchical Dynamic Pathway Regulation in Saccharomyces cerevisiae.
    David F; Nielsen J; Siewers V
    ACS Synth Biol; 2016 Mar; 5(3):224-33. PubMed ID: 26750662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Synthetic Malonyl-CoA Sensor in Saccharomyces cerevisiae for Intracellular Metabolite Monitoring and Genetic Screening.
    Li S; Si T; Wang M; Zhao H
    ACS Synth Biol; 2015 Dec; 4(12):1308-15. PubMed ID: 26149896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel role of malonyl-ACP in lipid homeostasis.
    Martinez MA; Zaballa ME; Schaeffer F; Bellinzoni M; Albanesi D; Schujman GE; Vila AJ; Alzari PM; de Mendoza D
    Biochemistry; 2010 Apr; 49(14):3161-7. PubMed ID: 20201588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator.
    Liu D; Xiao Y; Evans BS; Zhang F
    ACS Synth Biol; 2015 Feb; 4(2):132-40. PubMed ID: 24377365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A genetically encoded metabolite sensor for malonyl-CoA.
    Ellis JM; Wolfgang MJ
    Chem Biol; 2012 Oct; 19(10):1333-9. PubMed ID: 23102226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A plant malonyl-CoA synthetase enhances lipid content and polyketide yield in yeast cells.
    Wang Y; Chen H; Yu O
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5435-47. PubMed ID: 24682482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria.
    Yang D; Kim WJ; Yoo SM; Choi JH; Ha SH; Lee MH; Lee SY
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):9835-9844. PubMed ID: 30232266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Pseudomonas taiwanensis malonyl-CoA platform strain for polyketide synthesis.
    Schwanemann T; Otto M; Wynands B; Marienhagen J; Wierckx N
    Metab Eng; 2023 May; 77():219-230. PubMed ID: 37031949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FapR, a bacterial transcription factor involved in global regulation of membrane lipid biosynthesis.
    Schujman GE; Paoletti L; Grossman AD; de Mendoza D
    Dev Cell; 2003 May; 4(5):663-72. PubMed ID: 12737802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applied evolution: Dual dynamic regulations-based approaches in engineering intracellular malonyl-CoA availability.
    Wu J; Zhou L; Duan X; Peng H; Liu S; Zhuang Q; Pablo CM; Fan X; Ding S; Dong M; Zhou J
    Metab Eng; 2021 Sep; 67():403-416. PubMed ID: 34411702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus.
    Albanesi D; Reh G; Guerin ME; Schaeffer F; Debarbouille M; Buschiazzo A; Schujman GE; de Mendoza D; Alzari PM
    PLoS Pathog; 2013 Jan; 9(1):e1003108. PubMed ID: 23300457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncovering the formation and selection of benzylmalonyl-CoA from the biosynthesis of splenocin and enterocin reveals a versatile way to introduce amino acids into polyketide carbon scaffolds.
    Chang C; Huang R; Yan Y; Ma H; Dai Z; Zhang B; Deng Z; Liu W; Qu X
    J Am Chem Soc; 2015 Apr; 137(12):4183-90. PubMed ID: 25763681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.