These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 32574793)
1. Engineered dynamic distribution of malonyl-CoA flux for improving polyketide biosynthesis in Komagataella phaffii. Wen J; Tian L; Liu Q; Zhang Y; Cai M J Biotechnol; 2020 Aug; 320():80-85. PubMed ID: 32574793 [TBL] [Abstract][Full Text] [Related]
2. A Synthetic Malonyl-CoA Metabolic Oscillator in Wen J; Tian L; Xu M; Zhou X; Zhang Y; Cai M ACS Synth Biol; 2020 May; 9(5):1059-1068. PubMed ID: 32227991 [TBL] [Abstract][Full Text] [Related]
3. Development of a Genetically Encoded Biosensor for Detection of Polyketide Synthase Extender Units in Escherichia coli. Kalkreuter E; Keeler AM; Malico AA; Bingham KS; Gayen AK; Williams GJ ACS Synth Biol; 2019 Jun; 8(6):1391-1400. PubMed ID: 31134799 [TBL] [Abstract][Full Text] [Related]
4. Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli. Xu P; Wang W; Li L; Bhan N; Zhang F; Koffas MA ACS Chem Biol; 2014 Feb; 9(2):451-8. PubMed ID: 24191643 [TBL] [Abstract][Full Text] [Related]
5. Expanding the Dynamic Range of a Transcription Factor-Based Biosensor in Dabirian Y; Li X; Chen Y; David F; Nielsen J; Siewers V ACS Synth Biol; 2019 Sep; 8(9):1968-1975. PubMed ID: 31373795 [TBL] [Abstract][Full Text] [Related]
6. Design and application of genetically-encoded malonyl-CoA biosensors for metabolic engineering of microbial cell factories. Johnson AO; Gonzalez-Villanueva M; Wong L; Steinbüchel A; Tee KL; Xu P; Wong TS Metab Eng; 2017 Nov; 44():253-264. PubMed ID: 29097310 [TBL] [Abstract][Full Text] [Related]
7. Engineering intracellular malonyl-CoA availability in microbial hosts and its impact on polyketide and fatty acid synthesis. Milke L; Marienhagen J Appl Microbiol Biotechnol; 2020 Jul; 104(14):6057-6065. PubMed ID: 32385515 [TBL] [Abstract][Full Text] [Related]
8. Genetically Encoded FapR-NLuc as a Biosensor to Determine Malonyl-CoA in Situ at Subcellular Scales. Du Y; Hu H; Pei X; Du K; Wei T Bioconjug Chem; 2019 Mar; 30(3):826-832. PubMed ID: 30629412 [TBL] [Abstract][Full Text] [Related]
9. Flux Control at the Malonyl-CoA Node through Hierarchical Dynamic Pathway Regulation in Saccharomyces cerevisiae. David F; Nielsen J; Siewers V ACS Synth Biol; 2016 Mar; 5(3):224-33. PubMed ID: 26750662 [TBL] [Abstract][Full Text] [Related]
10. Development of a Synthetic Malonyl-CoA Sensor in Saccharomyces cerevisiae for Intracellular Metabolite Monitoring and Genetic Screening. Li S; Si T; Wang M; Zhao H ACS Synth Biol; 2015 Dec; 4(12):1308-15. PubMed ID: 26149896 [TBL] [Abstract][Full Text] [Related]
11. A novel role of malonyl-ACP in lipid homeostasis. Martinez MA; Zaballa ME; Schaeffer F; Bellinzoni M; Albanesi D; Schujman GE; Vila AJ; Alzari PM; de Mendoza D Biochemistry; 2010 Apr; 49(14):3161-7. PubMed ID: 20201588 [TBL] [Abstract][Full Text] [Related]
12. Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator. Liu D; Xiao Y; Evans BS; Zhang F ACS Synth Biol; 2015 Feb; 4(2):132-40. PubMed ID: 24377365 [TBL] [Abstract][Full Text] [Related]
13. A genetically encoded metabolite sensor for malonyl-CoA. Ellis JM; Wolfgang MJ Chem Biol; 2012 Oct; 19(10):1333-9. PubMed ID: 23102226 [TBL] [Abstract][Full Text] [Related]
14. A plant malonyl-CoA synthetase enhances lipid content and polyketide yield in yeast cells. Wang Y; Chen H; Yu O Appl Microbiol Biotechnol; 2014 Jun; 98(12):5435-47. PubMed ID: 24682482 [TBL] [Abstract][Full Text] [Related]
15. Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria. Yang D; Kim WJ; Yoo SM; Choi JH; Ha SH; Lee MH; Lee SY Proc Natl Acad Sci U S A; 2018 Oct; 115(40):9835-9844. PubMed ID: 30232266 [TBL] [Abstract][Full Text] [Related]
16. A Pseudomonas taiwanensis malonyl-CoA platform strain for polyketide synthesis. Schwanemann T; Otto M; Wynands B; Marienhagen J; Wierckx N Metab Eng; 2023 May; 77():219-230. PubMed ID: 37031949 [TBL] [Abstract][Full Text] [Related]
17. FapR, a bacterial transcription factor involved in global regulation of membrane lipid biosynthesis. Schujman GE; Paoletti L; Grossman AD; de Mendoza D Dev Cell; 2003 May; 4(5):663-72. PubMed ID: 12737802 [TBL] [Abstract][Full Text] [Related]
18. Applied evolution: Dual dynamic regulations-based approaches in engineering intracellular malonyl-CoA availability. Wu J; Zhou L; Duan X; Peng H; Liu S; Zhuang Q; Pablo CM; Fan X; Ding S; Dong M; Zhou J Metab Eng; 2021 Sep; 67():403-416. PubMed ID: 34411702 [TBL] [Abstract][Full Text] [Related]
19. Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus. Albanesi D; Reh G; Guerin ME; Schaeffer F; Debarbouille M; Buschiazzo A; Schujman GE; de Mendoza D; Alzari PM PLoS Pathog; 2013 Jan; 9(1):e1003108. PubMed ID: 23300457 [TBL] [Abstract][Full Text] [Related]
20. Uncovering the formation and selection of benzylmalonyl-CoA from the biosynthesis of splenocin and enterocin reveals a versatile way to introduce amino acids into polyketide carbon scaffolds. Chang C; Huang R; Yan Y; Ma H; Dai Z; Zhang B; Deng Z; Liu W; Qu X J Am Chem Soc; 2015 Apr; 137(12):4183-90. PubMed ID: 25763681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]