These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 32575207)
1. Transfer learning for scalability of neural-network quantum states. Zen R; My L; Tan R; Hébert F; Gattobigio M; Miniatura C; Poletti D; Bressan S Phys Rev E; 2020 May; 101(5-1):053301. PubMed ID: 32575207 [TBL] [Abstract][Full Text] [Related]
2. Scalable neural networks for the efficient learning of disordered quantum systems. Saraceni N; Cantori S; Pilati S Phys Rev E; 2020 Sep; 102(3-1):033301. PubMed ID: 33075937 [TBL] [Abstract][Full Text] [Related]
3. Learning a compass spin model with neural network quantum states. Zou E; Long E; Zhao E J Phys Condens Matter; 2022 Jan; 34(12):. PubMed ID: 34915457 [TBL] [Abstract][Full Text] [Related]
4. Tensor networks for unsupervised machine learning. Liu J; Li S; Zhang J; Zhang P Phys Rev E; 2023 Jan; 107(1):L012103. PubMed ID: 36797922 [TBL] [Abstract][Full Text] [Related]
5. Efficient representation of quantum many-body states with deep neural networks. Gao X; Duan LM Nat Commun; 2017 Sep; 8(1):662. PubMed ID: 28939812 [TBL] [Abstract][Full Text] [Related]
6. Restricted Boltzmann Machines for Quantum States with Non-Abelian or Anyonic Symmetries. Vieijra T; Casert C; Nys J; De Neve W; Haegeman J; Ryckebusch J; Verstraete F Phys Rev Lett; 2020 Mar; 124(9):097201. PubMed ID: 32202867 [TBL] [Abstract][Full Text] [Related]
7. Creating and concentrating quantum resource states in noisy environments using a quantum neural network. Krisnanda T; Ghosh S; Paterek T; Liew TCH Neural Netw; 2021 Apr; 136():141-151. PubMed ID: 33486293 [TBL] [Abstract][Full Text] [Related]
8. Universal construction of order parameters for translation-invariant quantum lattice systems with symmetry-breaking order. Liu JH; Shi QQ; Wang HL; Links J; Zhou HQ Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):020102. PubMed ID: 23005705 [TBL] [Abstract][Full Text] [Related]
9. Training an Ising machine with equilibrium propagation. Laydevant J; Marković D; Grollier J Nat Commun; 2024 Apr; 15(1):3671. PubMed ID: 38693108 [TBL] [Abstract][Full Text] [Related]
10. Simulating disordered quantum Ising chains via dense and sparse restricted Boltzmann machines. Pilati S; Pieri P Phys Rev E; 2020 Jun; 101(6-1):063308. PubMed ID: 32688495 [TBL] [Abstract][Full Text] [Related]
12. Purifying Deep Boltzmann Machines for Thermal Quantum States. Nomura Y; Yoshioka N; Nori F Phys Rev Lett; 2021 Aug; 127(6):060601. PubMed ID: 34420335 [TBL] [Abstract][Full Text] [Related]
13. Deep Autoregressive Models for the Efficient Variational Simulation of Many-Body Quantum Systems. Sharir O; Levine Y; Wies N; Carleo G; Shashua A Phys Rev Lett; 2020 Jan; 124(2):020503. PubMed ID: 32004039 [TBL] [Abstract][Full Text] [Related]
14. Voiceprint Identification for Limited Dataset Using the Deep Migration Hybrid Model Based on Transfer Learning. Sun C; Yang Y; Wen C; Xie K; Wen F Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30041500 [TBL] [Abstract][Full Text] [Related]
15. Solving the quantum many-body problem with artificial neural networks. Carleo G; Troyer M Science; 2017 Feb; 355(6325):602-606. PubMed ID: 28183973 [TBL] [Abstract][Full Text] [Related]
16. Quantum Many-Body Dynamics in Two Dimensions with Artificial Neural Networks. Schmitt M; Heyl M Phys Rev Lett; 2020 Sep; 125(10):100503. PubMed ID: 32955321 [TBL] [Abstract][Full Text] [Related]
17. REANN: A PyTorch-based end-to-end multi-functional deep neural network package for molecular, reactive, and periodic systems. Zhang Y; Xia J; Jiang B J Chem Phys; 2022 Mar; 156(11):114801. PubMed ID: 35317591 [TBL] [Abstract][Full Text] [Related]
18. Breakdown of intermediate one-half magnetization plateau of spin-1/2 Ising-Heisenberg and Heisenberg branched chains at triple and Kosterlitz-Thouless critical points. Karl'ová K; Strečka J; Lyra ML Phys Rev E; 2019 Oct; 100(4-1):042127. PubMed ID: 31770992 [TBL] [Abstract][Full Text] [Related]
19. Analogy between Boltzmann Machines and Feynman Path Integrals. Iyengar SS; Kais S J Chem Theory Comput; 2023 May; 19(9):2446-2454. PubMed ID: 37099405 [TBL] [Abstract][Full Text] [Related]
20. Self-learning projective quantum Monte Carlo simulations guided by restricted Boltzmann machines. Pilati S; Inack EM; Pieri P Phys Rev E; 2019 Oct; 100(4-1):043301. PubMed ID: 31770982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]