These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32575207)

  • 21. A new method of software vulnerability detection based on a quantum neural network.
    Zhou X; Pang J; Yue F; Liu F; Guo J; Liu W; Song Z; Shu G; Xia B; Shan Z
    Sci Rep; 2022 May; 12(1):8053. PubMed ID: 35577855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental Machine Learning of Quantum States.
    Gao J; Qiao LF; Jiao ZQ; Ma YC; Hu CQ; Ren RJ; Yang AL; Tang H; Yung MH; Jin XM
    Phys Rev Lett; 2018 Jun; 120(24):240501. PubMed ID: 29956972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Empowering deep neural quantum states through efficient optimization.
    Chen A; Heyl M
    Nat Phys; 2024; 20(9):1476-1481. PubMed ID: 39282553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Implementation of Quantum Machine Learning for Electronic Structure Calculations of Periodic Systems on Quantum Computing Devices.
    Sureshbabu SH; Sajjan M; Oh S; Kais S
    J Chem Inf Model; 2021 Jun; ():. PubMed ID: 34133166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum machine learning for electronic structure calculations.
    Xia R; Kais S
    Nat Commun; 2018 Oct; 9(1):4195. PubMed ID: 30305624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural-Network Quantum States for Spin-1 Systems: Spin-Basis and Parameterization Effects on Compactness of Representations.
    Pei MY; Clark SR
    Entropy (Basel); 2021 Jul; 23(7):. PubMed ID: 34356420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A coherent Ising machine for 2000-node optimization problems.
    Inagaki T; Haribara Y; Igarashi K; Sonobe T; Tamate S; Honjo T; Marandi A; McMahon PL; Umeki T; Enbutsu K; Tadanaga O; Takenouchi H; Aihara K; Kawarabayashi KI; Inoue K; Utsunomiya S; Takesue H
    Science; 2016 Nov; 354(6312):603-606. PubMed ID: 27811271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flexible learning of quantum states with generative query neural networks.
    Zhu Y; Wu YD; Bai G; Wang DS; Wang Y; Chiribella G
    Nat Commun; 2022 Oct; 13(1):6222. PubMed ID: 36266334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Where do features come from?
    Hinton G
    Cogn Sci; 2014 Aug; 38(6):1078-101. PubMed ID: 23800216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A single shot coherent Ising machine based on a network of injection-locked multicore fiber lasers.
    Babaeian M; Nguyen DT; Demir V; Akbulut M; Blanche PA; Kaneda Y; Guha S; Neifeld MA; Peyghambarian N
    Nat Commun; 2019 Aug; 10(1):3516. PubMed ID: 31388011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solving a Higgs optimization problem with quantum annealing for machine learning.
    Mott A; Job J; Vlimant JR; Lidar D; Spiropulu M
    Nature; 2017 Oct; 550(7676):375-379. PubMed ID: 29052620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Large-Scale Photonic Ising Machine by Spatial Light Modulation.
    Pierangeli D; Marcucci G; Conti C
    Phys Rev Lett; 2019 May; 122(21):213902. PubMed ID: 31283311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Helping restricted Boltzmann machines with quantum-state representation by restoring symmetry.
    Nomura Y
    J Phys Condens Matter; 2021 Apr; 33(17):. PubMed ID: 33530063
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantum deep learning by sampling neural nets with a quantum annealer.
    Higham CF; Bedford A
    Sci Rep; 2023 Mar; 13(1):3939. PubMed ID: 36894567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Symmetries and Many-Body Excitations with Neural-Network Quantum States.
    Choo K; Carleo G; Regnault N; Neupert T
    Phys Rev Lett; 2018 Oct; 121(16):167204. PubMed ID: 30387658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Harnessing deep neural networks to solve inverse problems in quantum dynamics: machine-learned predictions of time-dependent optimal control fields.
    Wang X; Kumar A; Shelton CR; Wong BM
    Phys Chem Chem Phys; 2020 Oct; 22(40):22889-22899. PubMed ID: 32935687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantum Adversarial Transfer Learning.
    Wang L; Sun Y; Zhang X
    Entropy (Basel); 2023 Jul; 25(7):. PubMed ID: 37510037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficiency of quantum vs. classical annealing in nonconvex learning problems.
    Baldassi C; Zecchina R
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):1457-1462. PubMed ID: 29382764
    [TBL] [Abstract][Full Text] [Related]  

  • 39. QFlow lite dataset: A machine-learning approach to the charge states in quantum dot experiments.
    Zwolak JP; Kalantre SS; Wu X; Ragole S; Taylor JM
    PLoS One; 2018; 13(10):e0205844. PubMed ID: 30332463
    [TBL] [Abstract][Full Text] [Related]  

  • 40. XXZ-Ising model on the triangular kagome lattice with spin 1 on the decorated trimers.
    Zhou C; Feng Y; Ruan J; Yao DX
    Phys Rev E; 2018 Jul; 98(1-1):012127. PubMed ID: 30110722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.