These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32575239)

  • 1. Stickiness in generic low-dimensional Hamiltonian systems: A recurrence-time statistics approach.
    Lozej Č
    Phys Rev E; 2020 May; 101(5-1):052204. PubMed ID: 32575239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure, size, and statistical properties of chaotic components in a mixed-type Hamiltonian system.
    Lozej Č; Robnik M
    Phys Rev E; 2018 Aug; 98(2-1):022220. PubMed ID: 30253479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenomenology of quantum eigenstates in mixed-type systems: Lemon billiards with complex phase space structure.
    Lozej Č; Lukman D; Robnik M
    Phys Rev E; 2022 Nov; 106(5-1):054203. PubMed ID: 36559388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of stickiness in the classical and quantum ergodic lemon billiard.
    Lozej Č; Lukman D; Robnik M
    Phys Rev E; 2021 Jan; 103(1-1):012204. PubMed ID: 33601585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stickiness in Hamiltonian systems: from sharply divided to hierarchical phase space.
    Altmann EG; Motter AE; Kantz H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026207. PubMed ID: 16605429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical properties of the localization measure of chaotic eigenstates and the spectral statistics in a mixed-type billiard.
    Batistić B; Lozej Č; Robnik M
    Phys Rev E; 2019 Dec; 100(6-1):062208. PubMed ID: 31962403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional billiards: Visualization of regular structures and trapping of chaotic trajectories.
    Firmbach M; Lange S; Ketzmerick R; Bäcker A
    Phys Rev E; 2018 Aug; 98(2-1):022214. PubMed ID: 30253550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistics of wave functions and currents induced by spin-orbit interaction in chaotic billiards.
    Bulgakov EN; Sadreev AF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056211. PubMed ID: 15600732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power-law decay of the fraction of the mixed eigenstates in kicked top model with mixed-type classical phase space.
    Wang Q; Robnik M
    Phys Rev E; 2023 Nov; 108(5-1):054217. PubMed ID: 38115398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-time recurrence analysis of chaotic trajectories in Hamiltonian systems.
    Palmero MS; Caldas IL; Sokolov IM
    Chaos; 2022 Nov; 32(11):113144. PubMed ID: 36456326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical localization in chaotic systems: spectral statistics and localization measure in the kicked rotator as a paradigm for time-dependent and time-independent systems.
    Manos T; Robnik M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062905. PubMed ID: 23848746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistics of the island-around-island hierarchy in Hamiltonian phase space.
    Alus O; Fishman S; Meiss JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062923. PubMed ID: 25615180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristic times in the standard map.
    Harsoula M; Karamanos K; Contopoulos G
    Phys Rev E; 2019 Mar; 99(3-1):032203. PubMed ID: 30999408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stickiness in mushroom billiards.
    Altmann EG; Motter AE; Kantz H
    Chaos; 2005 Sep; 15(3):33105. PubMed ID: 16252979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stickiness and recurrence plots: An entropy-based approach.
    Sales MR; Mugnaine M; Szezech JD; Viana RL; Caldas IL; Marwan N; Kurths J
    Chaos; 2023 Mar; 33(3):033140. PubMed ID: 37003817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-reversal-invariant hexagonal billiards with a point symmetry.
    Lima TA; do Carmo RB; Terto K; de Aguiar FM
    Phys Rev E; 2021 Dec; 104(6-1):064211. PubMed ID: 35030857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of stickiness by means of recurrence.
    Zou Y; Thiel M; Romano MC; Kurths J
    Chaos; 2007 Dec; 17(4):043101. PubMed ID: 18163765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polynomial dispersion of trajectories in sticky dynamics.
    Zaslavsky GM; Edelman M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036204. PubMed ID: 16241545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using rotation number to detect sticky orbits in Hamiltonian systems.
    Santos MS; Mugnaine M; Szezech JD; Batista AM; Caldas IL; Viana RL
    Chaos; 2019 Apr; 29(4):043125. PubMed ID: 31042961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mushrooms and other billiards with divided phase space.
    Bunimovich LA
    Chaos; 2001 Dec; 11(4):802-808. PubMed ID: 12779519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.