These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32575267)

  • 1. Symmetrical threshold model with independence on random graphs.
    Nowak B; Sznajd-Weron K
    Phys Rev E; 2020 May; 101(5-1):052316. PubMed ID: 32575267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pair approximation for the q-voter model with independence on multiplex networks.
    Gradowski T; Krawiecki A
    Phys Rev E; 2020 Aug; 102(2-1):022314. PubMed ID: 32942358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discontinuous phase transitions in the q-voter model with generalized anticonformity on random graphs.
    Abramiuk-Szurlej A; Lipiecki A; Pawłowski J; Sznajd-Weron K
    Sci Rep; 2021 Sep; 11(1):17719. PubMed ID: 34489517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Veritable Zoology of Successive Phase Transitions in the Asymmetric
    Chmiel A; Sienkiewicz J; Fronczak A; Fronczak P
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discontinuous phase transitions in the multi-state noisy q-voter model: quenched vs. annealed disorder.
    Nowak B; Stoń B; Sznajd-Weron K
    Sci Rep; 2021 Mar; 11(1):6098. PubMed ID: 33731793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized Independence in the
    Abramiuk A; Sznajd-Weron K
    Entropy (Basel); 2020 Jan; 22(1):. PubMed ID: 33285895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pair approximation for the q-voter models with quenched disorder on networks.
    Jędrzejewski A; Sznajd-Weron K
    Phys Rev E; 2022 Jun; 105(6-1):064306. PubMed ID: 35854498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Threshold q-voter model.
    Vieira AR; Anteneodo C
    Phys Rev E; 2018 May; 97(5-1):052106. PubMed ID: 29906869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is Independence Necessary for a Discontinuous Phase Transition within the
    Abramiuk A; Pawłowski J; Sznajd-Weron K
    Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous symmetry breaking of active phase in coevolving nonlinear voter model.
    Jędrzejewski A; Toruniewska J; Suchecki K; Zaikin O; Hołyst JA
    Phys Rev E; 2020 Oct; 102(4-1):042313. PubMed ID: 33212744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformity in numbers-Does criticality in social responses exist?
    Nyczka P; Byrka K; Nail PR; Sznajd-Weron K
    PLoS One; 2018; 13(12):e0209620. PubMed ID: 30589873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase transitions in a multistate majority-vote model on complex networks.
    Chen H; Li G
    Phys Rev E; 2018 Jun; 97(6-1):062304. PubMed ID: 30011539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase transitions in the q-voter model with noise on a duplex clique.
    Chmiel A; Sznajd-Weron K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052812. PubMed ID: 26651749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interacting opinion and disease dynamics in multiplex networks: Discontinuous phase transition and nonmonotonic consensus times.
    Velásquez-Rojas F; Vazquez F
    Phys Rev E; 2017 May; 95(5-1):052315. PubMed ID: 28618582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear q-voter model from the quenched perspective.
    Jędrzejewski A; Sznajd-Weron K
    Chaos; 2020 Jan; 30(1):013150. PubMed ID: 32013464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase transitions in the q-voter model with two types of stochastic driving.
    Nyczka P; Sznajd-Weron K; Cisło J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011105. PubMed ID: 23005366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pair approximation for the q-voter model with independence on complex networks.
    Jędrzejewski A
    Phys Rev E; 2017 Jan; 95(1-1):012307. PubMed ID: 28208483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical noise of majority-vote model on complex networks.
    Chen H; Shen C; He G; Zhang H; Hou Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022816. PubMed ID: 25768561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase diagrams of the Ziff-Gulari-Barshad model on random networks.
    Vilela EB; Fernandes HA; Paranhos Costa FL; Gomes PF
    J Comput Chem; 2020 Aug; 41(22):1965-1972. PubMed ID: 32597515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-state majority-vote model on small-world networks.
    Zubillaga BJ; Vilela ALM; Wang M; Du R; Dong G; Stanley HE
    Sci Rep; 2022 Jan; 12(1):282. PubMed ID: 34996913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.