These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32575278)

  • 1. Exactly solvable two-terminal heat engine with asymmetric Onsager coefficients: Origin of the power-efficiency bound.
    Lee JS; Park JM; Chun HM; Um J; Park H
    Phys Rev E; 2020 May; 101(5-1):052132. PubMed ID: 32575278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime.
    Yamamoto K; Hatano N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042165. PubMed ID: 26565226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical Onsager symmetries in adiabatically driven linear irreversible heat engines.
    Izumida Y
    Phys Rev E; 2021 May; 103(5):L050101. PubMed ID: 34134349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasilinear irreversible thermodynamics of a low-temperature-differential kinematic Stirling heat engine.
    Izumida Y
    Phys Rev E; 2020 Jul; 102(1-1):012142. PubMed ID: 32795077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cycling Tames Power Fluctuations near Optimum Efficiency.
    Holubec V; Ryabov A
    Phys Rev Lett; 2018 Sep; 121(12):120601. PubMed ID: 30296120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brownian heat engine with active reservoirs.
    Lee JS; Park JM; Park H
    Phys Rev E; 2020 Sep; 102(3-1):032116. PubMed ID: 33075980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The power of a critical heat engine.
    Campisi M; Fazio R
    Nat Commun; 2016 Jun; 7():11895. PubMed ID: 27320127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Onsager coefficients of a finite-time Carnot cycle.
    Izumida Y; Okuda K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021121. PubMed ID: 19792091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-particle stochastic heat engine.
    Rana S; Pal PS; Saha A; Jayannavar AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042146. PubMed ID: 25375477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021133. PubMed ID: 23005748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic bounds and general properties of optimal efficiency and power in linear responses.
    Jiang JH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042126. PubMed ID: 25375457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Power, Efficiency and Fluctuations in a Quantum Point Contact as Steady-State Thermoelectric Heat Engine.
    Kheradsoud S; Dashti N; Misiorny M; Potts PP; Splettstoesser J; Samuelsson P
    Entropy (Basel); 2019 Aug; 21(8):. PubMed ID: 33267490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong bounds on Onsager coefficients and efficiency for three-terminal thermoelectric transport in a magnetic field.
    Brandner K; Saito K; Seifert U
    Phys Rev Lett; 2013 Feb; 110(7):070603. PubMed ID: 25166361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The underdamped Brownian duet and stochastic linear irreversible thermodynamics.
    Proesmans K; Van den Broeck C
    Chaos; 2017 Oct; 27(10):104601. PubMed ID: 29092424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of interference in the photosynthetic heat engine.
    Xu YY; Liu J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052131. PubMed ID: 25493763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics.
    Wu F; He J; Ma Y; Wang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062134. PubMed ID: 25615071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Performance Analysis of a Simplified Curzon-Ahlborn Engine.
    Páez-Hernández RT; Chimal-Eguía JC; Ladino-Luna D; Velázquez-Arcos JM
    Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantum-dot heat engine operating close to the thermodynamic efficiency limits.
    Josefsson M; Svilans A; Burke AM; Hoffmann EA; Fahlvik S; Thelander C; Leijnse M; Linke H
    Nat Nanotechnol; 2018 Oct; 13(10):920-924. PubMed ID: 30013221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear and nonlinear thermodynamics of a kinetic heat engine with fast transformations.
    Cerino L; Puglisi A; Vulpiani A
    Phys Rev E; 2016 Apr; 93():042116. PubMed ID: 27176263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal finite-time Brownian Carnot engine.
    Frim AG; DeWeese MR
    Phys Rev E; 2022 May; 105(5):L052103. PubMed ID: 35706186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.