These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 32575304)
1. Boosting Monte Carlo simulations of spin glasses using autoregressive neural networks. McNaughton B; Milošević MV; Perali A; Pilati S Phys Rev E; 2020 May; 101(5-1):053312. PubMed ID: 32575304 [TBL] [Abstract][Full Text] [Related]
2. A general construction for parallelizing Metropolis-Hastings algorithms. Calderhead B Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17408-13. PubMed ID: 25422442 [TBL] [Abstract][Full Text] [Related]
3. Self-learning projective quantum Monte Carlo simulations guided by restricted Boltzmann machines. Pilati S; Inack EM; Pieri P Phys Rev E; 2019 Oct; 100(4-1):043301. PubMed ID: 31770982 [TBL] [Abstract][Full Text] [Related]
4. Noise can speed Markov chain Monte Carlo estimation and quantum annealing. Franzke B; Kosko B Phys Rev E; 2019 Nov; 100(5-1):053309. PubMed ID: 31869933 [TBL] [Abstract][Full Text] [Related]
5. A Bootstrap Metropolis-Hastings Algorithm for Bayesian Analysis of Big Data. Liang F; Kim J; Song Q Technometrics; 2016; 58(3):604-318. PubMed ID: 29033469 [TBL] [Abstract][Full Text] [Related]
6. A Reweighted Scheme to Improve the Representation of the Neural Autoregressive Distribution Estimator. Wang Z; Wu Q Comput Intell Neurosci; 2018; 2018():6401645. PubMed ID: 30675150 [TBL] [Abstract][Full Text] [Related]
7. Deep Autoregressive Models for the Efficient Variational Simulation of Many-Body Quantum Systems. Sharir O; Levine Y; Wies N; Carleo G; Shashua A Phys Rev Lett; 2020 Jan; 124(2):020503. PubMed ID: 32004039 [TBL] [Abstract][Full Text] [Related]
8. Quantum-enhanced Markov chain Monte Carlo. Layden D; Mazzola G; Mishmash RV; Motta M; Wocjan P; Kim JS; Sheldon S Nature; 2023 Jul; 619(7969):282-287. PubMed ID: 37438591 [TBL] [Abstract][Full Text] [Related]
9. A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants. Liang F; Jin IH Neural Comput; 2013 Aug; 25(8):2199-234. PubMed ID: 23607562 [TBL] [Abstract][Full Text] [Related]
11. Variational method for estimating the rate of convergence of Markov-chain Monte Carlo algorithms. Casey FP; Waterfall JJ; Gutenkunst RN; Myers CR; Sethna JP Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046704. PubMed ID: 18999558 [TBL] [Abstract][Full Text] [Related]
12. An algorithm for Monte Carlo estimation of genotype probabilities on complex pedigrees. Lin S; Thompson E; Wijsman E Ann Hum Genet; 1994 Oct; 58(4):343-57. PubMed ID: 7864590 [TBL] [Abstract][Full Text] [Related]
13. Comparing Monte Carlo methods for finding ground states of Ising spin glasses: Population annealing, simulated annealing, and parallel tempering. Wang W; Machta J; Katzgraber HG Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013303. PubMed ID: 26274303 [TBL] [Abstract][Full Text] [Related]
14. Monte Carlo simulations of glass-forming liquids beyond Metropolis. Berthier L; Ghimenti F; van Wijland F J Chem Phys; 2024 Sep; 161(11):. PubMed ID: 39283338 [TBL] [Abstract][Full Text] [Related]
16. A Neural Network MCMC Sampler That Maximizes Proposal Entropy. Li Z; Chen Y; Sommer FT Entropy (Basel); 2021 Feb; 23(3):. PubMed ID: 33668743 [TBL] [Abstract][Full Text] [Related]
17. Sampling with flows, diffusion, and autoregressive neural networks from a spin-glass perspective. Ghio D; Dandi Y; Krzakala F; Zdeborová L Proc Natl Acad Sci U S A; 2024 Jul; 121(27):e2311810121. PubMed ID: 38913892 [TBL] [Abstract][Full Text] [Related]
18. APT-MCMC, a C++/Python implementation of Markov Chain Monte Carlo for parameter identification. Zhang LA; Urbano A; Clermont G; Swigon D; Banerjee I; Parker RS Comput Chem Eng; 2018 Feb; 110():1-12. PubMed ID: 31427833 [TBL] [Abstract][Full Text] [Related]
19. Bayesian Computational Methods for Sampling from the Posterior Distribution of a Bivariate Survival Model, Based on AMH Copula in the Presence of Right-Censored Data. Saraiva EF; Suzuki AK; Milan LA Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265731 [TBL] [Abstract][Full Text] [Related]
20. Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology. Dhamala J; Arevalo HJ; Sapp J; Horácek BM; Wu KC; Trayanova NA; Wang L Med Image Anal; 2018 Aug; 48():43-57. PubMed ID: 29843078 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]