These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 32575310)
1. Consequences of Dale's law on the stability-complexity relationship of random neural networks. Ipsen JR; Peterson ADH Phys Rev E; 2020 May; 101(5-1):052412. PubMed ID: 32575310 [TBL] [Abstract][Full Text] [Related]
2. Functional Implications of Dale's Law in Balanced Neuronal Network Dynamics and Decision Making. Barranca VJ; Bhuiyan A; Sundgren M; Xing F Front Neurosci; 2022; 16():801847. PubMed ID: 35295091 [TBL] [Abstract][Full Text] [Related]
4. Correlations and population dynamics in cortical networks. Kriener B; Tetzlaff T; Aertsen A; Diesmann M; Rotter S Neural Comput; 2008 Sep; 20(9):2185-226. PubMed ID: 18439141 [TBL] [Abstract][Full Text] [Related]
5. Small modifications to network topology can induce stochastic bistable spiking dynamics in a balanced cortical model. McDonnell MD; Ward LM PLoS One; 2014; 9(4):e88254. PubMed ID: 24743633 [TBL] [Abstract][Full Text] [Related]
6. Quasicritical brain dynamics on a nonequilibrium Widom line. Williams-GarcĂa RV; Moore M; Beggs JM; Ortiz G Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062714. PubMed ID: 25615136 [TBL] [Abstract][Full Text] [Related]
7. Statistical complexity is maximized in a small-world brain. Tan TL; Cheong SA PLoS One; 2017; 12(8):e0183918. PubMed ID: 28850587 [TBL] [Abstract][Full Text] [Related]
8. Single neurons can induce phase transitions of cortical recurrent networks with multiple internal States. Fujisawa S; Matsuki N; Ikegaya Y Cereb Cortex; 2006 May; 16(5):639-54. PubMed ID: 16093564 [TBL] [Abstract][Full Text] [Related]
10. A neural network model for kindling of focal epilepsy: basic mechanism. Mehta MR; Dasgupta C; Ullal GR Biol Cybern; 1993; 68(4):335-40. PubMed ID: 8476976 [TBL] [Abstract][Full Text] [Related]
11. The relation between structural and functional connectivity patterns in complex brain networks. Stam CJ; van Straaten EC; Van Dellen E; Tewarie P; Gong G; Hillebrand A; Meier J; Van Mieghem P Int J Psychophysiol; 2016 May; 103():149-60. PubMed ID: 25678023 [TBL] [Abstract][Full Text] [Related]
12. Control of brain network dynamics across diverse scales of space and time. Tang E; Ju H; Baum GL; Roalf DR; Satterthwaite TD; Pasqualetti F; Bassett DS Phys Rev E; 2020 Jun; 101(6-1):062301. PubMed ID: 32688528 [TBL] [Abstract][Full Text] [Related]
13. Synergistic effect of repulsive inhibition in synchronization of excitatory networks. Belykh I; Reimbayev R; Zhao K Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062919. PubMed ID: 26172784 [TBL] [Abstract][Full Text] [Related]
14. Symmetries Constrain Dynamics in a Family of Balanced Neural Networks. Barreiro AK; Kutz JN; Shlizerman E J Math Neurosci; 2017 Oct; 7(1):10. PubMed ID: 29019105 [TBL] [Abstract][Full Text] [Related]
15. Adaptive self-organization in a realistic neural network model. Meisel C; Gross T Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061917. PubMed ID: 20365200 [TBL] [Abstract][Full Text] [Related]
16. Simulated generation of evoked potentials components using networks with distinct excitatory and inhibitory neurons. Ventouras E; Uzunoglu NK; Koutsouris D; Papageorgiou C; Rabavilas A; Stefanis C IEEE Trans Inf Technol Biomed; 2000 Sep; 4(3):238-46. PubMed ID: 11026594 [TBL] [Abstract][Full Text] [Related]