These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32575396)

  • 1. Deep Learning of Cancer Stem Cell Morphology Using Conditional Generative Adversarial Networks.
    Aida S; Okugawa J; Fujisaka S; Kasai T; Kameda H; Sugiyama T
    Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32575396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning of Phase-Contrast Images of Cancer Stem Cells Using a Selected Dataset of High Accuracy Value Using Conditional Generative Adversarial Networks.
    Zhang Z; Ishihata H; Maruyama R; Kasai T; Kameda H; Sugiyama T
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal and Locational Values of Images Affecting the Deep Learning of Cancer Stem Cell Morphology.
    Hanai Y; Ishihata H; Zhang Z; Maruyama R; Kasai T; Kameda H; Sugiyama T
    Biomedicines; 2022 Apr; 10(5):. PubMed ID: 35625678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-sequence MR image-based synthetic CT generation using a generative adversarial network for head and neck MRI-only radiotherapy.
    Qi M; Li Y; Wu A; Jia Q; Li B; Sun W; Dai Z; Lu X; Zhou L; Deng X; Song T
    Med Phys; 2020 Apr; 47(4):1880-1894. PubMed ID: 32027027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning from adversarial medical images for X-ray breast mass segmentation.
    Shen T; Gou C; Wang FY; He Z; Chen W
    Comput Methods Programs Biomed; 2019 Oct; 180():105012. PubMed ID: 31421601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning models for cancer stem cell detection: a brief review.
    Chen J; Xu L; Li X; Park S
    Front Immunol; 2023; 14():1214425. PubMed ID: 37441078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green Fluorescent Protein and Phase-Contrast Image Fusion via Generative Adversarial Networks.
    Tang W; Liu Y; Zhang C; Cheng J; Peng H; Chen X
    Comput Math Methods Med; 2019; 2019():5450373. PubMed ID: 31885682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conditional generative adversarial network for 3D rigid-body motion correction in MRI.
    Johnson PM; Drangova M
    Magn Reson Med; 2019 Sep; 82(3):901-910. PubMed ID: 31006909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SAP-cGAN: Adversarial learning for breast mass segmentation in digital mammogram based on superpixel average pooling.
    Li Y; Zhao G; Zhang Q; Lin Y; Wang M
    Med Phys; 2021 Mar; 48(3):1157-1167. PubMed ID: 33340125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning detects genetic alterations in cancer histology generated by adversarial networks.
    Krause J; Grabsch HI; Kloor M; Jendrusch M; Echle A; Buelow RD; Boor P; Luedde T; Brinker TJ; Trautwein C; Pearson AT; Quirke P; Jenniskens J; Offermans K; van den Brandt PA; Kather JN
    J Pathol; 2021 May; 254(1):70-79. PubMed ID: 33565124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning of Cancer Stem Cell Morphology.
    Kameda H; Ishihata H; Sugiyama T
    Methods Mol Biol; 2024; 2777():231-256. PubMed ID: 38478348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose.
    Wang Y; Yu B; Wang L; Zu C; Lalush DS; Lin W; Wu X; Zhou J; Shen D; Zhou L
    Neuroimage; 2018 Jul; 174():550-562. PubMed ID: 29571715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the Quality of Synthetic FLAIR Images with Deep Learning Using a Conditional Generative Adversarial Network for Pixel-by-Pixel Image Translation.
    Hagiwara A; Otsuka Y; Hori M; Tachibana Y; Yokoyama K; Fujita S; Andica C; Kamagata K; Irie R; Koshino S; Maekawa T; Chougar L; Wada A; Takemura MY; Hattori N; Aoki S
    AJNR Am J Neuroradiol; 2019 Feb; 40(2):224-230. PubMed ID: 30630834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks.
    Sandfort V; Yan K; Pickhardt PJ; Summers RM
    Sci Rep; 2019 Nov; 9(1):16884. PubMed ID: 31729403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis.
    Rana A; Lowe A; Lithgow M; Horback K; Janovitz T; Da Silva A; Tsai H; Shanmugam V; Bayat A; Shah P
    JAMA Netw Open; 2020 May; 3(5):e205111. PubMed ID: 32432709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual organelle self-coding for fluorescence imaging via adversarial learning.
    Nguyen T; Bui V; Thai A; Lam V; Raub C; Chang LC; Nehmetallah G
    J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32996300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generative approach for data augmentation for deep learning-based bone surface segmentation from ultrasound images.
    Zaman A; Park SH; Bang H; Park CW; Park I; Joung S
    Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):931-941. PubMed ID: 32399586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generative Adversarial Network for Medical Images (MI-GAN).
    Iqbal T; Ali H
    J Med Syst; 2018 Oct; 42(11):231. PubMed ID: 30315368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate colorectal tumor segmentation for CT scans based on the label assignment generative adversarial network.
    Liu X; Guo S; Zhang H; He K; Mu S; Guo Y; Li X
    Med Phys; 2019 Aug; 46(8):3532-3542. PubMed ID: 31087327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction and application of a lung cancer stem cell model: antitumor drug screening and molecular mechanism of the inhibitory effects of sanguinarine.
    Yang J; Fang Z; Wu J; Yin X; Fang Y; Zhao F; Zhu S; Li Y
    Tumour Biol; 2016 Oct; 37(10):13871-13883. PubMed ID: 27485114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.