BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32575396)

  • 61. Polyp Segmentation using Generative Adversarial Network.
    Poorneshwaran JM; Santhosh Kumar S; Ram K; Joseph J; Sivaprakasam M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():7201-7204. PubMed ID: 31947496
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A novel approach for enriching cancer stem cells from the human SW-13 adrenocortical carcinoma cell line.
    Zeng W; Chen X; Ma Y; Huang Z; Qin Y; Wu F; Wu L; Liang X; Qin Y; Zhou J; Lu D; Kuang X; Li QQ; Luo Z
    Anticancer Res; 2014 Jan; 34(1):117-23. PubMed ID: 24403451
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Fully Automated Breast Density Segmentation and Classification Using Deep Learning.
    Saffari N; Rashwan HA; Abdel-Nasser M; Kumar Singh V; Arenas M; Mangina E; Herrera B; Puig D
    Diagnostics (Basel); 2020 Nov; 10(11):. PubMed ID: 33238512
    [TBL] [Abstract][Full Text] [Related]  

  • 64. MicroRNA-1 down-regulates proliferation and migration of breast cancer stem cells by inhibiting the Wnt/β-catenin pathway.
    Liu T; Hu K; Zhao Z; Chen G; Ou X; Zhang H; Zhang X; Wei X; Wang D; Cui M; Liu C
    Oncotarget; 2015 Dec; 6(39):41638-49. PubMed ID: 26497855
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Generative Deep Learning in Digital Pathology Workflows.
    Morrison D; Harris-Birtill D; Caie PD
    Am J Pathol; 2021 Oct; 191(10):1717-1723. PubMed ID: 33838127
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ultrasonic imaging using conditional generative adversarial networks.
    Molinier N; Painchaud-April G; Le Duff A; Toews M; Bélanger P
    Ultrasonics; 2023 Aug; 133():107015. PubMed ID: 37269681
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Deep learning for World Health Organization grades of pancreatic neuroendocrine tumors on contrast-enhanced magnetic resonance images: a preliminary study.
    Gao X; Wang X
    Int J Comput Assist Radiol Surg; 2019 Nov; 14(11):1981-1991. PubMed ID: 31555998
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sulforaphane Suppresses the Growth of Triple-negative Breast Cancer Stem-like Cells
    Castro NP; Rangel MC; Merchant AS; MacKinnon G; Cuttitta F; Salomon DS; Kim YS
    Cancer Prev Res (Phila); 2019 Mar; 12(3):147-158. PubMed ID: 30679159
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The role of CD133 expression in the carcinogenesis and prognosis of patients with lung cancer.
    Le H; Zeng F; Xu L; Liu X; Huang Y
    Mol Med Rep; 2013 Nov; 8(5):1511-8. PubMed ID: 24008862
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cisplatin induces stemness in ovarian cancer.
    Wiechert A; Saygin C; Thiagarajan PS; Rao VS; Hale JS; Gupta N; Hitomi M; Nagaraj AB; DiFeo A; Lathia JD; Reizes O
    Oncotarget; 2016 May; 7(21):30511-22. PubMed ID: 27105520
    [TBL] [Abstract][Full Text] [Related]  

  • 71. PRDM14, a Zinc Finger Protein, Regulates Cancer Stemness.
    Taniguchi H; Imai K
    Methods Mol Biol; 2018; 1867():3-13. PubMed ID: 30155811
    [TBL] [Abstract][Full Text] [Related]  

  • 72. TumorGAN: A Multi-Modal Data Augmentation Framework for Brain Tumor Segmentation.
    Li Q; Yu Z; Wang Y; Zheng H
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32731598
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Identification of cancer stem cells derived from a canine lung adenocarcinoma cell line.
    Nemoto Y; Maruo T; Sato T; Deguchi T; Ito T; Sugiyama H; Ishikawa T; Madarame H; Watanabe T; Shida T; Sahara H
    Vet Pathol; 2011 Sep; 48(5):1029-34. PubMed ID: 21245282
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Segmentation, Detection, and Tracking of Stem Cell Image by Digital Twins and Lightweight Deep Learning.
    Du X; Liu M; Sun Y
    Comput Intell Neurosci; 2022; 2022():6003293. PubMed ID: 35422850
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Deep Learning for Virtual Histological Staining of Bright-Field Microscopic Images of Unlabeled Carotid Artery Tissue.
    Li D; Hui H; Zhang Y; Tong W; Tian F; Yang X; Liu J; Chen Y; Tian J
    Mol Imaging Biol; 2020 Oct; 22(5):1301-1309. PubMed ID: 32514884
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Quantification of
    Zhang J; Comstock JA; Cotter CR; Murphy PA; Nie W; Welch RD; Patel AB; Igoshin OA
    Microorganisms; 2021 Sep; 9(9):. PubMed ID: 34576849
    [No Abstract]   [Full Text] [Related]  

  • 77. HoloPhaseNet: fully automated deep-learning-based hologram reconstruction using a conditional generative adversarial model.
    Jaferzadeh K; Fevens T
    Biomed Opt Express; 2022 Jul; 13(7):4032-4046. PubMed ID: 35991913
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Deep learning 2D and 3D optical sectioning microscopy using cross-modality Pix2Pix cGAN image translation.
    Zhuge H; Summa B; Hamm J; Brown JQ
    Biomed Opt Express; 2021 Dec; 12(12):7526-7543. PubMed ID: 35003850
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Computational tissue staining of non-linear multimodal imaging using supervised and unsupervised deep learning.
    Pradhan P; Meyer T; Vieth M; Stallmach A; Waldner M; Schmitt M; Popp J; Bocklitz T
    Biomed Opt Express; 2021 Apr; 12(4):2280-2298. PubMed ID: 33996229
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Artificial intelligence to generate medical images: augmenting the cardiologist's visual clinical workflow.
    Olender ML; de la Torre Hernández JM; Athanasiou LS; Nezami FR; Edelman ER
    Eur Heart J Digit Health; 2021 Sep; 2(3):539-544. PubMed ID: 36713593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.