These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32575460)

  • 1. Carbon Nanomaterial-Based Nanofluids for Direct Thermal Solar Absorption.
    Trong Tam N; Viet Phuong N; Hong Khoi P; Ngoc Minh P; Afrand M; Van Trinh P; Hung Thang B; Żyła G; Estellé P
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32575460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanofluids for Direct-Absorption Solar Collectors-DASCs: A Review on Recent Progress and Future Perspectives.
    Moghaieb HS; Amendola V; Khalil S; Chakrabarti S; Maguire P; Mariotti D
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon-Nanohorn Based Nanofluids for a Direct Absorption Solar Collector for Civil Application.
    Moradi A; Sani E; Simonetti M; Francini F; Chiavazzo E; Asinari P
    J Nanosci Nanotechnol; 2015 May; 15(5):3488-95. PubMed ID: 26504968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review.
    Chamsa-Ard W; Brundavanam S; Fung CC; Fawcett D; Poinern G
    Nanomaterials (Basel); 2017 May; 7(6):. PubMed ID: 28561802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Few-Layered Reduced Graphene Oxide Nanofluid as a Working Fluid for Direct Absorption Solar Collectors.
    Shende RC; Ramaprabhu S
    J Nanosci Nanotechnol; 2017 Feb; 17(2):1233-239. PubMed ID: 29683297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review on Recent Progress in Preparation of Medium-Temperature Solar-Thermal Nanofluids with Stable Dispersion.
    Hu T; Zhang J; Xia J; Li X; Tao P; Deng T
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Six Carbon-Based Nanomaterials on the Rheological Properties of Nanofluids.
    Vallejo JP; Żyła G; Fernández-Seara J; Lugo L
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30682791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanohorns-based nanofluids as direct sunlight absorbers.
    Sani E; Barison S; Pagura C; Mercatelli L; Sansoni P; Fontani D; Jafrancesco D; Francini F
    Opt Express; 2010 Mar; 18(5):5179-87. PubMed ID: 20389531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges, limitations, and applications of nanofluids in solar thermal collectors-a comprehensive review.
    Omeiza LA; Abid M; Subramanian Y; Dhanasekaran A; Bakar SA; Azad AK
    Environ Sci Pollut Res Int; 2023 Nov; ():. PubMed ID: 38019406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon-Based Nanofluids and Their Advances towards Heat Transfer Applications-A Review.
    Ali N; Bahman AM; Aljuwayhel NF; Ebrahim SA; Mukherjee S; Alsayegh A
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34205801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flat plate solar collector performance using alumina nanofluids: Experimental characterization and efficiency tests.
    Mondragón R; Sánchez D; Cabello R; Llopis R; Juliá JE
    PLoS One; 2019; 14(2):e0212260. PubMed ID: 30794583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal properties of carbon black aqueous nanofluids for solar absorption.
    Han D; Meng Z; Wu D; Zhang C; Zhu H
    Nanoscale Res Lett; 2011 Jul; 6(1):457. PubMed ID: 21767359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into the Investigation of Diamond Nanoparticles Suspended Therminol
    Das L; Rubbi F; Habib K; Aslfattahi N; Rahman S; Yahya SM; Kadirgama K
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced photothermal conversion properties of magnetic nanofluids through rotating magnetic field for direct absorption solar collector.
    Wang D; Jia Y; He Y; Wang L; Fan J; Xie H; Yu W
    J Colloid Interface Sci; 2019 Dec; 557():266-275. PubMed ID: 31521975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the photo-thermal conversion behavior and extinction coefficient of activated carbon nanofluids for direct absorption solar collector applications.
    Kumar PG; Vigneswaran S; Meikandan M; Sakthivadivel D; Salman M; Thakur AK; Sathyamurthy R; Kim SC
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):13188-13200. PubMed ID: 34585351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study on thermal properties and electrical conductivity of stabilized H
    Ganesh Kumar P; Sakthivadivel D; Meikandan M; Vigneswaran VS; Velraj R
    Heliyon; 2019 Aug; 5(8):e02385. PubMed ID: 31517103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel WS
    Martínez-Merino P; Midgley SD; Martín EI; Estellé P; Alcántara R; Sánchez-Coronilla A; Grau-Crespo R; Navas J
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5793-5804. PubMed ID: 31942792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Properties of Mixed Nanofluids Containing Carbon Nanohorns and Silver Nanoparticles for Solar Energy Applications.
    Sani E; Di Ninni P; Colla L; Barison S; Agresti F
    J Nanosci Nanotechnol; 2015 May; 15(5):3568-73. PubMed ID: 26504978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermophysical properties of nanofluids.
    Rudyak VY; Minakov AV
    Eur Phys J E Soft Matter; 2018 Jan; 41(1):15. PubMed ID: 29380078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental investigation of an asymmetric compound parabolic concentrator-based direct absorption solar collector using plasmonic nanofluids.
    Singh P; Kumar S; Chander N; Bagha AK
    Environ Sci Pollut Res Int; 2023 May; 30(21):60383-60398. PubMed ID: 37022546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.