These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 32575460)

  • 21. Nanofluid Development Using Silver Nanoparticles and Organic-Luminescent Molecules for Solar-Thermal and Hybrid Photovoltaic-Thermal Applications.
    Walshe J; Carron PM; McLoughlin C; McCormack S; Doran J; Amarandei G
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32575601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hybrid Nanofluids as Renewable and Sustainable Colloidal Suspensions for Potential Photovoltaic/Thermal and Solar Energy Applications.
    Rasheed T; Hussain T; Anwar MT; Ali J; Rizwan K; Bilal M; Alshammari FH; Alwadai N; Almuslem AS
    Front Chem; 2021; 9():737033. PubMed ID: 34646812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface modification of carbon nanotubes with copper oxide nanoparticles for heat transfer enhancement of nanofluids.
    Manasrah AD; Almanassra IW; Marei NN; Al-Mubaiyedh UA; Laoui T; Atieh MA
    RSC Adv; 2018 Jan; 8(4):1791-1802. PubMed ID: 35542567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ethylene glycol-based solar-thermal fluids dispersed with reduced graphene oxide.
    Shu L; Zhang J; Fu B; Xu J; Tao P; Song C; Shang W; Wu J; Deng T
    RSC Adv; 2019 Mar; 9(18):10282-10288. PubMed ID: 35520884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Review on thermal properties of nanofluids: Recent developments.
    Angayarkanni SA; Philip J
    Adv Colloid Interface Sci; 2015 Nov; 225():146-76. PubMed ID: 26391519
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Boiling heat transfer and droplet spreading of nanofluids.
    Murshed SM; de Castro CA
    Recent Pat Nanotechnol; 2013 Nov; 7(3):216-23. PubMed ID: 24330044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-dispersible graphene quantum dots in ethylene glycol for direct absorption-based medium-temperature solar-thermal harvesting.
    Lin R; Zhang J; Shu L; Zhu J; Fu B; Song C; Shang W; Tao P; Deng T
    RSC Adv; 2020 Dec; 10(73):45028-45036. PubMed ID: 35516255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Comparison of Empirical Correlations of Viscosity and Thermal Conductivity of Water-Ethylene Glycol-Al
    Sawicka D; Cieśliński JT; Smolen S
    Nanomaterials (Basel); 2020 Jul; 10(8):. PubMed ID: 32751158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal and rheological properties of magnetic nanofluids: Recent advances and future directions.
    Vinod S; Philip J
    Adv Colloid Interface Sci; 2022 Sep; 307():102729. PubMed ID: 35834910
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photothermal response of CVD synthesized carbon (nano)spheres/aqueous nanofluids for potential application in direct solar absorption collectors: a preliminary investigation.
    Poinern GE; Brundavanam S; Shah M; Laava I; Fawcett D
    Nanotechnol Sci Appl; 2012; 5():49-59. PubMed ID: 24198496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal-Hydraulic Analysis of Parabolic Trough Collectors Using Straight Conical Strip Inserts with Nanofluids.
    Abed N; Afgan I; Iacovides H; Cioncolini A; Khurshid I; Nasser A
    Nanomaterials (Basel); 2021 Mar; 11(4):. PubMed ID: 33810625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward TiO
    Yang L; Hu Y
    Nanoscale Res Lett; 2017 Dec; 12(1):446. PubMed ID: 28687038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Simple Approach for Heat Transfer Enhancement of Carbon Nanofluids in Aqueous Media.
    Dovjuu O; Kim S; Lee A; Kim J; Noh J; Huh S; Choi B; Jeong H
    J Nanosci Nanotechnol; 2020 Apr; 20(4):2337-2343. PubMed ID: 31492245
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental Exploration of Hybrid Nanofluids as Energy-Efficient Fluids in Solar and Thermal Energy Storage Applications.
    Yasmin H; Giwa SO; Noor S; Sharifpur M
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal properties of nanofluids.
    Philip J; Shima PD
    Adv Colloid Interface Sci; 2012 Nov; 183-184():30-45. PubMed ID: 22921845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Utilization of zinc-ferrite/water hybrid nanofluids on thermal performance of a flat plate solar collector-a thermal modeling approach.
    Stalin PMJ; Arjunan TV; Almeshaal M; Murugesan P; Prabu B; Kumar PM
    Environ Sci Pollut Res Int; 2022 Nov; 29(52):78848-78861. PubMed ID: 35701694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intriguingly high thermal conductivity increment for CuO nanowires contained nanofluids with low viscosity.
    Zhu D; Wang L; Yu W; Xie H
    Sci Rep; 2018 Mar; 8(1):5282. PubMed ID: 29588467
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Progress on Stability and Thermo-Physical Properties of Mono and Hybrid towards Green Nanofluids.
    Zainon SNM; Azmi WH
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33670250
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal Performance of Hybrid-Inspired Coolant for Radiator Application.
    Benedict F; Kumar A; Kadirgama K; Mohammed HA; Ramasamy D; Samykano M; Saidur R
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32498258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modification of the Raman Spectra in Graphene-Based Nanofluids and Its Correlation with Thermal Properties.
    Rodríguez-Laguna MDR; Gómez-Romero P; Sotomayor Torres CM; Chavez-Angel E
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31130687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.