BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

526 related articles for article (PubMed ID: 32575664)

  • 1. Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities.
    Tornesello AL; Borrelli A; Buonaguro L; Buonaguro FM; Tornesello ML
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32575664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering "Antimicrobial Peptides" and Other Peptides to Modulate Protein-Protein Interactions in Cancer.
    Rubin SJS; Qvit N
    Curr Top Med Chem; 2020; 20(32):2970-2983. PubMed ID: 33087030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective phenylalanine to proline substitution for improved antimicrobial and anticancer activities of peptides designed on phenylalanine heptad repeat.
    Tripathi AK; Kumari T; Tandon A; Sayeed M; Afshan T; Kathuria M; Shukla PK; Mitra K; Ghosh JK
    Acta Biomater; 2017 Jul; 57():170-186. PubMed ID: 28483698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications.
    Deslouches B; Di YP
    Oncotarget; 2017 Jul; 8(28):46635-46651. PubMed ID: 28422728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CancerGram: An Effective Classifier for Differentiating Anticancer from Antimicrobial Peptides.
    Burdukiewicz M; Sidorczuk K; Rafacz D; Pietluch F; Bąkała M; Słowik J; Gagat P
    Pharmaceutics; 2020 Oct; 12(11):. PubMed ID: 33142753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial/anticancer peptides: bioactive molecules and therapeutic agents.
    Kardani K; Bolhassani A
    Immunotherapy; 2021 Jun; 13(8):669-684. PubMed ID: 33878901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on anticancer activities of antimicrobial peptides.
    Hoskin DW; Ramamoorthy A
    Biochim Biophys Acta; 2008 Feb; 1778(2):357-75. PubMed ID: 18078805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane-active host defense peptides--challenges and perspectives for the development of novel anticancer drugs.
    Riedl S; Zweytick D; Lohner K
    Chem Phys Lipids; 2011 Nov; 164(8):766-81. PubMed ID: 21945565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective anticancer activity of synthetic peptides derived from the host defence peptide tritrpticin.
    Arias M; Haney EF; Hilchie AL; Corcoran JA; Hyndman ME; Hancock REW; Vogel HJ
    Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183228. PubMed ID: 32126228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anticancer Mechanisms and Potential Anticancer Applications of Antimicrobial Peptides and Their Nano Agents.
    Dong Z; Zhang X; Zhang Q; Tangthianchaichana J; Guo M; Du S; Lu Y
    Int J Nanomedicine; 2024; 19():1017-1039. PubMed ID: 38317847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial Peptides: Mechanisms of Action and Resistance.
    Bechinger B; Gorr SU
    J Dent Res; 2017 Mar; 96(3):254-260. PubMed ID: 27872334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of antimicrobial peptides as next-generation therapeutics in the biomedical world.
    Datta M; Rajeev A; Chattopadhyay I
    Biotechnol Genet Eng Rev; 2023 Apr; ():1-39. PubMed ID: 37036043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A How-To Guide for Mode of Action Analysis of Antimicrobial Peptides.
    Schäfer AB; Wenzel M
    Front Cell Infect Microbiol; 2020; 10():540898. PubMed ID: 33194788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Reciprocity of Amyloids and Antimicrobial Peptides: Rethinking the Role of Supramolecular Assembly in Host Defense, Immune Activation, and Inflammation.
    Lee EY; Srinivasan Y; de Anda J; Nicastro LK; Tükel Ç; Wong GCL
    Front Immunol; 2020; 11():1629. PubMed ID: 32849553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammalian Antimicrobial Peptides: Promising Therapeutic Targets Against Infection and Chronic Inflammation.
    Dutta P; Das S
    Curr Top Med Chem; 2016; 16(1):99-129. PubMed ID: 26139111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant antimicrobial peptides as potential anticancer agents.
    Guzmán-Rodríguez JJ; Ochoa-Zarzosa A; López-Gómez R; López-Meza JE
    Biomed Res Int; 2015; 2015():735087. PubMed ID: 25815333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides.
    Nuri R; Shprung T; Shai Y
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt B):3089-100. PubMed ID: 26051126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Therapeutic Potential of Animal β-hairpin Antimicrobial Peptides.
    Panteleev PV; Balandin SV; Ivanov VT; Ovchinnikova TV
    Curr Med Chem; 2017; 24(17):1724-1746. PubMed ID: 28440185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Very Short and Stable Lactoferricin-Derived Antimicrobial Peptides: Design Principles and Potential Uses.
    Svendsen JSM; Grant TM; Rennison D; Brimble MA; Svenson J
    Acc Chem Res; 2019 Mar; 52(3):749-759. PubMed ID: 30829472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rediscovery of antimicrobial peptides as therapeutic agents.
    Ryu M; Park J; Yeom JH; Joo M; Lee K
    J Microbiol; 2021 Feb; 59(2):113-123. PubMed ID: 33527313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.