These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Engineering "Antimicrobial Peptides" and Other Peptides to Modulate Protein-Protein Interactions in Cancer. Rubin SJS; Qvit N Curr Top Med Chem; 2020; 20(32):2970-2983. PubMed ID: 33087030 [TBL] [Abstract][Full Text] [Related]
3. Application of antimicrobial peptides as next-generation therapeutics in the biomedical world. Datta M; Rajeev A; Chattopadhyay I Biotechnol Genet Eng Rev; 2024 Nov; 40(3):2458-2496. PubMed ID: 37036043 [TBL] [Abstract][Full Text] [Related]
4. Selective phenylalanine to proline substitution for improved antimicrobial and anticancer activities of peptides designed on phenylalanine heptad repeat. Tripathi AK; Kumari T; Tandon A; Sayeed M; Afshan T; Kathuria M; Shukla PK; Mitra K; Ghosh JK Acta Biomater; 2017 Jul; 57():170-186. PubMed ID: 28483698 [TBL] [Abstract][Full Text] [Related]
5. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Deslouches B; Di YP Oncotarget; 2017 Jul; 8(28):46635-46651. PubMed ID: 28422728 [TBL] [Abstract][Full Text] [Related]
6. CancerGram: An Effective Classifier for Differentiating Anticancer from Antimicrobial Peptides. Burdukiewicz M; Sidorczuk K; Rafacz D; Pietluch F; Bąkała M; Słowik J; Gagat P Pharmaceutics; 2020 Oct; 12(11):. PubMed ID: 33142753 [TBL] [Abstract][Full Text] [Related]
11. Anticancer Mechanisms and Potential Anticancer Applications of Antimicrobial Peptides and Their Nano Agents. Dong Z; Zhang X; Zhang Q; Tangthianchaichana J; Guo M; Du S; Lu Y Int J Nanomedicine; 2024; 19():1017-1039. PubMed ID: 38317847 [TBL] [Abstract][Full Text] [Related]
12. Antimicrobial Peptides: Mechanisms of Action and Resistance. Bechinger B; Gorr SU J Dent Res; 2017 Mar; 96(3):254-260. PubMed ID: 27872334 [TBL] [Abstract][Full Text] [Related]
13. A How-To Guide for Mode of Action Analysis of Antimicrobial Peptides. Schäfer AB; Wenzel M Front Cell Infect Microbiol; 2020; 10():540898. PubMed ID: 33194788 [TBL] [Abstract][Full Text] [Related]
14. Functional Reciprocity of Amyloids and Antimicrobial Peptides: Rethinking the Role of Supramolecular Assembly in Host Defense, Immune Activation, and Inflammation. Lee EY; Srinivasan Y; de Anda J; Nicastro LK; Tükel Ç; Wong GCL Front Immunol; 2020; 11():1629. PubMed ID: 32849553 [TBL] [Abstract][Full Text] [Related]
15. Mammalian Antimicrobial Peptides: Promising Therapeutic Targets Against Infection and Chronic Inflammation. Dutta P; Das S Curr Top Med Chem; 2016; 16(1):99-129. PubMed ID: 26139111 [TBL] [Abstract][Full Text] [Related]
16. Plant antimicrobial peptides as potential anticancer agents. Guzmán-Rodríguez JJ; Ochoa-Zarzosa A; López-Gómez R; López-Meza JE Biomed Res Int; 2015; 2015():735087. PubMed ID: 25815333 [TBL] [Abstract][Full Text] [Related]
17. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides. Nuri R; Shprung T; Shai Y Biochim Biophys Acta; 2015 Nov; 1848(11 Pt B):3089-100. PubMed ID: 26051126 [TBL] [Abstract][Full Text] [Related]
18. A Therapeutic Potential of Animal β-hairpin Antimicrobial Peptides. Panteleev PV; Balandin SV; Ivanov VT; Ovchinnikova TV Curr Med Chem; 2017; 24(17):1724-1746. PubMed ID: 28440185 [TBL] [Abstract][Full Text] [Related]
19. Very Short and Stable Lactoferricin-Derived Antimicrobial Peptides: Design Principles and Potential Uses. Svendsen JSM; Grant TM; Rennison D; Brimble MA; Svenson J Acc Chem Res; 2019 Mar; 52(3):749-759. PubMed ID: 30829472 [TBL] [Abstract][Full Text] [Related]
20. Rediscovery of antimicrobial peptides as therapeutic agents. Ryu M; Park J; Yeom JH; Joo M; Lee K J Microbiol; 2021 Feb; 59(2):113-123. PubMed ID: 33527313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]