These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32576143)

  • 21. Investigation of genotype x environment interactions for weaning weight for Herefords in three countries.
    de Mattos D; Bertrand JK; Misztal I
    J Anim Sci; 2000 Aug; 78(8):2121-6. PubMed ID: 10947098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of variance components and prediction of breeding values for scrotal circumference and weaning weight in Limousin cattle.
    Keeton LL; Green RD; Golden BL; Anderson KJ
    J Anim Sci; 1996 Jan; 74(1):31-6. PubMed ID: 8778109
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Variance and covariance components for weaning weight for Herefords in three countries.
    de Mattos D; Misztal I; Bertrand JK
    J Anim Sci; 2000 Jan; 78(1):33-7. PubMed ID: 10682800
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accuracies of direct genomic breeding values in Hereford beef cattle using national or international training populations.
    Saatchi M; Ward J; Garrick DJ
    J Anim Sci; 2013 Apr; 91(4):1538-51. PubMed ID: 23345550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. International genomic evaluation methods for dairy cattle.
    VanRaden PM; Sullivan PG
    Genet Sel Evol; 2010 Mar; 42(1):7. PubMed ID: 20193071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strategies for accommodating gene-edited sires and their descendants in genetic evaluations.
    Sanglard LP; See GM; Spangler ML
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 36897830
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phenotypic and Genetic Correlations of Feed Efficiency Traits with Growth and Carcass Traits in Nellore Cattle Selected for Postweaning Weight.
    Ceacero TM; Mercadante ME; Cyrillo JN; Canesin RC; Bonilha SF; de Albuquerque LG
    PLoS One; 2016; 11(8):e0161366. PubMed ID: 27537268
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Validation of national genetic evaluations for maternal beef cattle traits using Irish field data.
    McHugh N; Cromie AR; Evans RD; Berry DP
    J Anim Sci; 2014 Apr; 92(4):1423-32. PubMed ID: 24663204
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic parameters and relationships between hip height and weight in Brahman cattle.
    Vargas CA; Elzo MA; Chase CC; Olson TA
    J Anim Sci; 2000 Dec; 78(12):3045-52. PubMed ID: 11132818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Principal component approach in variance component estimation for international sire evaluation.
    Tyrisevä AM; Meyer K; Fikse WF; Ducrocq V; Jakobsen J; Lidauer MH; Mäntysaari EA
    Genet Sel Evol; 2011 May; 43(1):21. PubMed ID: 21609451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of conventional BLUP and single-step genomic BLUP evaluations for yearling weight and carcass traits in Hanwoo beef cattle using single trait and multi-trait models.
    Mehrban H; Lee DH; Naserkheil M; Moradi MH; Ibáñez-Escriche N
    PLoS One; 2019; 14(10):e0223352. PubMed ID: 31609979
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genotyping strategies for genomic selection in small dairy cattle populations.
    Jiménez-Montero JA; González-Recio O; Alenda R
    Animal; 2012 Aug; 6(8):1216-24. PubMed ID: 23217224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prior (co)variances can improve multiple-trait across-country evaluations of weakly linked bull populations.
    Mark T; Madsen P; Jensen J; Fikse WF
    J Dairy Sci; 2005 Sep; 88(9):3290-302. PubMed ID: 16107419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simple method for genomic selection of moderately sized dairy cattle populations.
    Weller JI; Ron M; Glick G; Shirak A; Zeron Y; Ezra E
    Animal; 2012 Feb; 6(2):193-202. PubMed ID: 22436176
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation of correlation between maternal permanent environmental effects of related dams in beef cattle.
    Iwaisaki H; Tsuruta S; Misztal I; Bertrand JK
    J Anim Sci; 2005 Mar; 83(3):537-42. PubMed ID: 15705749
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimation of direct, maternal, and grandmaternal genetic effects for weaning weight in several breeds of beef cattle.
    Dodenhoff J; Van Vleck LD; Gregory KE
    J Anim Sci; 1999 Apr; 77(4):840-5. PubMed ID: 10328347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Weighting genomic and genealogical information for genetic parameter estimation and breeding value prediction in tropical beef cattle.
    Raidan FSS; Porto-Neto LR; Li Y; Lehnert SA; Reverter A
    J Anim Sci; 2018 Mar; 96(2):612-617. PubMed ID: 29385460
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genotype by production environment interaction for birth and weaning weights in a population of composite beef cattle.
    Santana ML; Eler JP; Bignardi AB; Ferraz JB
    Animal; 2014 Mar; 8(3):379-87. PubMed ID: 24534687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient Monte Carlo algorithm for restricted maximum likelihood estimation of genetic parameters.
    Matilainen K; Mäntysaari EA; Strandén I
    J Anim Breed Genet; 2019 Jul; 136(4):252-261. PubMed ID: 31247679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Including microbiome information in a multi-trait genomic evaluation: a case study on longitudinal growth performance in beef cattle.
    Martínez-Álvaro M; Mattock J; González-Recio Ó; Saborío-Montero A; Weng Z; Lima J; Duthie CA; Dewhurst R; Cleveland MA; Watson M; Roehe R
    Genet Sel Evol; 2024 Mar; 56(1):19. PubMed ID: 38491422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.