These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
341 related articles for article (PubMed ID: 32576248)
41. Short-Term Exposure to High-Temperature Water Causes a Shift in the Microbiome of the Common Aquarium Sponge Lendenfeldia chondrodes. Vargas S; Leiva L; Wörheide G Microb Ecol; 2021 Jan; 81(1):213-222. PubMed ID: 32767091 [TBL] [Abstract][Full Text] [Related]
42. Evidence for selective bacterial community structuring in the freshwater sponge Ephydatia fluviatilis. Costa R; Keller-Costa T; Gomes NC; da Rocha UN; van Overbeek L; van Elsas JD Microb Ecol; 2013 Jan; 65(1):232-44. PubMed ID: 22903086 [TBL] [Abstract][Full Text] [Related]
43. Ontogeny of symbiont community structure in two carotenoid-rich, viviparous marine sponges: comparison of microbiomes and analysis of culturable pigmented heterotrophic bacteria. Sacristán-Soriano O; Winkler M; Erwin P; Weisz J; Harriott O; Heussler G; Bauer E; West Marsden B; Hill A; Hill M Environ Microbiol Rep; 2019 Apr; 11(2):249-261. PubMed ID: 30761773 [TBL] [Abstract][Full Text] [Related]
44. Potential Interactions between Clade SUP05 Sulfur-Oxidizing Bacteria and Phages in Hydrothermal Vent Sponges. Zhou K; Zhang R; Sun J; Zhang W; Tian RM; Chen C; Kawagucci S; Xu Y Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31492669 [TBL] [Abstract][Full Text] [Related]
45. Microbiome of the freshwater sponge Ephydatia muelleri shares compositional and functional similarities with those of marine sponges. Sugden S; Holert J; Cardenas E; Mohn WW; Stein LY ISME J; 2022 Nov; 16(11):2503-2512. PubMed ID: 35906397 [TBL] [Abstract][Full Text] [Related]
47. Removing environmental sources of variation to gain insight on symbionts vs. transient microbes in high and low microbial abundance sponges. Blanquer A; Uriz MJ; Galand PE Environ Microbiol; 2013 Nov; 15(11):3008-19. PubMed ID: 24118834 [TBL] [Abstract][Full Text] [Related]
48. Enrichable consortia of microbial symbionts degrade macroalgal polysaccharides in Oliver A; Podell S; Wegley Kelly L; Sparagon WJ; Plominsky AM; Nelson RS; Laurens LML; Augyte S; Sims NA; Nelson CE; Allen EE mBio; 2024 May; 15(5):e0049624. PubMed ID: 38534158 [TBL] [Abstract][Full Text] [Related]
49. Comparative genomics identifies key adaptive traits of sponge-associated microbial symbionts. O'Brien PA; Robbins SJ; Tan S; Rix L; Miller DJ; Webster NS; Zhang G; Bourne DG Environ Microbiol; 2024 Sep; 26(9):e16690. PubMed ID: 39228053 [TBL] [Abstract][Full Text] [Related]
50. Genomic characterization of the bacterial phylum Su L; Marshall IPG; Teske AP; Yao H; Li J mBio; 2024 Aug; 15(8):e0099224. PubMed ID: 38980039 [TBL] [Abstract][Full Text] [Related]
51. A genomic view of the microbiome of coral reef demosponges. Robbins SJ; Song W; Engelberts JP; Glasl B; Slaby BM; Boyd J; Marangon E; Botté ES; Laffy P; Thomas T; Webster NS ISME J; 2021 Jun; 15(6):1641-1654. PubMed ID: 33469166 [TBL] [Abstract][Full Text] [Related]
52. [Bleaching of Baikalian Sponge Affects The Taxonomic Composition of Symbiotic Microorganisms]. Kaluzhnaya OV; Itskovich VB Genetika; 2015 Nov; 51(11):1335-40. PubMed ID: 26845865 [TBL] [Abstract][Full Text] [Related]
53. Temporal molecular and isotopic analysis of active bacterial communities in two New Zealand sponges. Simister R; Taylor MW; Rogers KM; Schupp PJ; Deines P FEMS Microbiol Ecol; 2013 Jul; 85(1):195-205. PubMed ID: 23488722 [TBL] [Abstract][Full Text] [Related]
54. A specific mix of generalists: bacterial symbionts in Mediterranean Ircinia spp. Erwin PM; López-Legentil S; González-Pech R; Turon X FEMS Microbiol Ecol; 2012 Mar; 79(3):619-37. PubMed ID: 22092516 [TBL] [Abstract][Full Text] [Related]
55. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Dombrowski N; Seitz KW; Teske AP; Baker BJ Microbiome; 2017 Aug; 5(1):106. PubMed ID: 28835260 [TBL] [Abstract][Full Text] [Related]
56. Hyperexpansion of genetic diversity and metabolic capacity of extremophilic bacteria and archaea in ancient Andean lake sediments. Lezcano MÁ; Bornemann TLV; Sánchez-García L; Carrizo D; Adam PS; Esser SP; Cabrol NA; Probst AJ; Parro V Microbiome; 2024 Sep; 12(1):176. PubMed ID: 39300577 [TBL] [Abstract][Full Text] [Related]
57. Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts. Taylor JA; Palladino G; Wemheuer B; Steinert G; Sipkema D; Williams TJ; Thomas T ISME J; 2021 Feb; 15(2):503-519. PubMed ID: 33011742 [TBL] [Abstract][Full Text] [Related]
58. Genomic blueprints of sponge-prokaryote symbiosis are shared by low abundant and cultivatable Alphaproteobacteria. Karimi E; Keller-Costa T; Slaby BM; Cox CJ; da Rocha UN; Hentschel U; Costa R Sci Rep; 2019 Feb; 9(1):1999. PubMed ID: 30760820 [TBL] [Abstract][Full Text] [Related]
59. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. Slaby BM; Hackl T; Horn H; Bayer K; Hentschel U ISME J; 2017 Nov; 11(11):2465-2478. PubMed ID: 28696422 [TBL] [Abstract][Full Text] [Related]