These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 32576412)
1. LAG3 (CD223) and autoimmunity: Emerging evidence. Hu S; Liu X; Li T; Li Z; Hu F J Autoimmun; 2020 Aug; 112():102504. PubMed ID: 32576412 [TBL] [Abstract][Full Text] [Related]
5. Research Progress Concerning Dual Blockade of Lymphocyte-Activation Gene 3 and Programmed Death-1/Programmed Death-1 Ligand-1 Blockade in Cancer Immunotherapy: Preclinical and Clinical Evidence of This Potentially More Effective Immunotherapy Strategy. Qi Y; Chen L; Liu Q; Kong X; Fang Y; Wang J Front Immunol; 2020; 11():563258. PubMed ID: 33488573 [TBL] [Abstract][Full Text] [Related]
6. Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas. Zhou G; Sprengers D; Boor PPC; Doukas M; Schutz H; Mancham S; Pedroza-Gonzalez A; Polak WG; de Jonge J; Gaspersz M; Dong H; Thielemans K; Pan Q; IJzermans JNM; Bruno MJ; Kwekkeboom J Gastroenterology; 2017 Oct; 153(4):1107-1119.e10. PubMed ID: 28648905 [TBL] [Abstract][Full Text] [Related]
7. Modulating the wayward T cell: New horizons with immune checkpoint inhibitor treatments in autoimmunity, transplant, and cancer. Calabrese LH; Caporali R; Blank CU; Kirk AD J Autoimmun; 2020 Dec; 115():102546. PubMed ID: 32980229 [TBL] [Abstract][Full Text] [Related]
8. From bench to bedside: targeting lymphocyte activation gene 3 as a therapeutic strategy for autoimmune diseases. Zhou X; Gu Y; Wang H; Zhou W; Zou L; Li S; Hua C; Gao S Inflamm Res; 2023 Jun; 72(6):1215-1235. PubMed ID: 37314518 [TBL] [Abstract][Full Text] [Related]
9. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model. Huang RY; Eppolito C; Lele S; Shrikant P; Matsuzaki J; Odunsi K Oncotarget; 2015 Sep; 6(29):27359-77. PubMed ID: 26318293 [TBL] [Abstract][Full Text] [Related]
10. Immune checkpoints and cancer development: Therapeutic implications and future directions. Mehdizadeh S; Bayatipoor H; Pashangzadeh S; Jafarpour R; Shojaei Z; Motallebnezhad M Pathol Res Pract; 2021 Jul; 223():153485. PubMed ID: 34022684 [TBL] [Abstract][Full Text] [Related]
11. Molecular and Clinical Characterization of LAG3 in Breast Cancer Through 2994 Samples. Liu Q; Qi Y; Zhai J; Kong X; Wang X; Wang Z; Fang Y; Wang J Front Immunol; 2021; 12():599207. PubMed ID: 34267742 [TBL] [Abstract][Full Text] [Related]
12. Balancing cancer immunotherapy and immune-related adverse events: The emerging role of regulatory T cells. Alissafi T; Hatzioannou A; Legaki AI; Varveri A; Verginis P J Autoimmun; 2019 Nov; 104():102310. PubMed ID: 31421963 [TBL] [Abstract][Full Text] [Related]
13. The immune checkpoint receptor LAG3: Structure, function, and target for cancer immunotherapy. Mariuzza RA; Shahid S; Karade SS J Biol Chem; 2024 May; 300(5):107241. PubMed ID: 38556085 [TBL] [Abstract][Full Text] [Related]
14. Fibrinogen-like protein 1 (FGL1): the next immune checkpoint target. Qian W; Zhao M; Wang R; Li H J Hematol Oncol; 2021 Sep; 14(1):147. PubMed ID: 34526102 [TBL] [Abstract][Full Text] [Related]
15. Sequential targeting of PI3Kδ and LAG3 as an effective anti-cancer approach. Lauder SN; Vanhaesebroeck B; Gallimore A Br J Cancer; 2021 Aug; 125(4):467-469. PubMed ID: 33824480 [TBL] [Abstract][Full Text] [Related]
16. Lymphocyte activation gene 3: a novel therapeutic target in chronic lymphocytic leukemia. Shapiro M; Herishanu Y; Katz BZ; Dezorella N; Sun C; Kay S; Polliack A; Avivi I; Wiestner A; Perry C Haematologica; 2017 May; 102(5):874-882. PubMed ID: 28154084 [TBL] [Abstract][Full Text] [Related]
17. Resistance to PD1 blockade in the absence of metalloprotease-mediated LAG3 shedding. Andrews LP; Somasundaram A; Moskovitz JM; Szymczak-Workman AL; Liu C; Cillo AR; Lin H; Normolle DP; Moynihan KD; Taniuchi I; Irvine DJ; Kirkwood JM; Lipson EJ; Ferris RL; Bruno TC; Workman CJ; Vignali DAA Sci Immunol; 2020 Jul; 5(49):. PubMed ID: 32680952 [TBL] [Abstract][Full Text] [Related]
18. The Role of Immunomodulatory Receptors in the Pathogenesis of HIV Infection: A Therapeutic Opportunity for HIV Cure? Chen H; Moussa M; Catalfamo M Front Immunol; 2020; 11():1223. PubMed ID: 32714317 [TBL] [Abstract][Full Text] [Related]