BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 32576627)

  • 1. Integrating Immunotherapy and Targeted Therapy in Cancer Treatment: Mechanistic Insights and Clinical Implications.
    Bergholz JS; Wang Q; Kabraji S; Zhao JJ
    Clin Cancer Res; 2020 Nov; 26(21):5557-5566. PubMed ID: 32576627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Immunotherapy Combinations.
    Bashir B; Wilson MA
    Curr Oncol Rep; 2019 Nov; 21(11):96. PubMed ID: 31696332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor-intrinsic signaling pathways: key roles in the regulation of the immunosuppressive tumor microenvironment.
    Yang L; Li A; Lei Q; Zhang Y
    J Hematol Oncol; 2019 Nov; 12(1):125. PubMed ID: 31775797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining targeted therapy with immunotherapy. Can 1+1 equal more than 2?
    Robert L; Ribas A; Hu-Lieskovan S
    Semin Immunol; 2016 Feb; 28(1):73-80. PubMed ID: 26861544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual effects of a targeted small-molecule inhibitor (cabozantinib) on immune-mediated killing of tumor cells and immune tumor microenvironment permissiveness when combined with a cancer vaccine.
    Kwilas AR; Ardiani A; Donahue RN; Aftab DT; Hodge JW
    J Transl Med; 2014 Nov; 12():294. PubMed ID: 25388653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The future of cancer immunotherapy: microenvironment-targeting combinations.
    Murciano-Goroff YR; Warner AB; Wolchok JD
    Cell Res; 2020 Jun; 30(6):507-519. PubMed ID: 32467593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acquired resistance to cancer immunotherapy.
    Draghi A; Chamberlain CA; Furness A; Donia M
    Semin Immunopathol; 2019 Jan; 41(1):31-40. PubMed ID: 29968044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted Therapy and Immunosuppression in the Tumor Microenvironment.
    Allegrezza MJ; Conejo-Garcia JR
    Trends Cancer; 2017 Jan; 3(1):19-27. PubMed ID: 28718424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging role of metabolic reprogramming in tumor immune evasion and immunotherapy.
    Fan C; Zhang S; Gong Z; Li X; Xiang B; Deng H; Zhou M; Li G; Li Y; Xiong W; Zeng Z; Li X
    Sci China Life Sci; 2021 Apr; 64(4):534-547. PubMed ID: 32815067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibiting the inhibitors: evaluating agents targeting cancer immunosuppression.
    Whiteside TL
    Expert Opin Biol Ther; 2010 Jul; 10(7):1019-35. PubMed ID: 20415597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure).
    Kim JM; Chen DS
    Ann Oncol; 2016 Aug; 27(8):1492-504. PubMed ID: 27207108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination cancer immunotherapies tailored to the tumour microenvironment.
    Smyth MJ; Ngiow SF; Ribas A; Teng MW
    Nat Rev Clin Oncol; 2016 Mar; 13(3):143-58. PubMed ID: 26598942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemotherapeutic and targeted agents can modulate the tumor microenvironment and increase the efficacy of immune checkpoint blockades.
    Li JY; Chen YP; Li YQ; Liu N; Ma J
    Mol Cancer; 2021 Feb; 20(1):27. PubMed ID: 33541368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy.
    Gao S; Yang D; Fang Y; Lin X; Jin X; Wang Q; Wang X; Ke L; Shi K
    Theranostics; 2019; 9(1):126-151. PubMed ID: 30662558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ILT4 functions as a potential checkpoint molecule for tumor immunotherapy.
    Gao A; Sun Y; Peng G
    Biochim Biophys Acta Rev Cancer; 2018 Apr; 1869(2):278-285. PubMed ID: 29649510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Future perspectives in melanoma research : Meeting report from the "Melanoma Bridge". Napoli, December 1st-4th 2015.
    Ascierto PA; Agarwala S; Botti G; Cesano A; Ciliberto G; Davies MA; Demaria S; Dummer R; Eggermont AM; Ferrone S; Fu YX; Gajewski TF; Garbe C; Huber V; Khleif S; Krauthammer M; Lo RS; Masucci G; Palmieri G; Postow M; Puzanov I; Silk A; Spranger S; Stroncek DF; Tarhini A; Taube JM; Testori A; Wang E; Wargo JA; Yee C; Zarour H; Zitvogel L; Fox BA; Mozzillo N; Marincola FM; Thurin M
    J Transl Med; 2016 Nov; 14(1):313. PubMed ID: 27846884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of immune evasion and current status of checkpoint inhibitors in non-small cell lung cancer.
    Qin A; Coffey DG; Warren EH; Ramnath N
    Cancer Med; 2016 Sep; 5(9):2567-78. PubMed ID: 27416962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immune Checkpoint Inhibition for Pancreatic Ductal Adenocarcinoma: Current Limitations and Future Options.
    Kabacaoglu D; Ciecielski KJ; Ruess DA; Algül H
    Front Immunol; 2018; 9():1878. PubMed ID: 30158932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies to Improve the Antitumor Effect of Immunotherapy for Hepatocellular Carcinoma.
    Xing R; Gao J; Cui Q; Wang Q
    Front Immunol; 2021; 12():783236. PubMed ID: 34899747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux.
    O'Donnell JS; Massi D; Teng MWL; Mandala M
    Semin Cancer Biol; 2018 Feb; 48():91-103. PubMed ID: 28467889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.