These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 32576869)
1. β-carboline chemical signals induce reveromycin production through a LuxR family regulator in Streptomyces sp. SN-593. Panthee S; Kito N; Hayashi T; Shimizu T; Ishikawa J; Hamamoto H; Osada H; Takahashi S Sci Rep; 2020 Jun; 10(1):10230. PubMed ID: 32576869 [TBL] [Abstract][Full Text] [Related]
2. β-carboline biomediators induce reveromycin production in Streptomyces sp. SN-593. Panthee S; Takahashi S; Hayashi T; Shimizu T; Osada H Sci Rep; 2019 Apr; 9(1):5802. PubMed ID: 30967594 [TBL] [Abstract][Full Text] [Related]
3. Studies on Streptomyces sp. SN-593: reveromycin biosynthesis, β-carboline biomediator activating LuxR family regulator, and construction of terpenoid biosynthetic platform. Takahashi S J Antibiot (Tokyo); 2022 Aug; 75(8):432-444. PubMed ID: 35778609 [TBL] [Abstract][Full Text] [Related]
4. Promoter Engineering Reveals the Importance of Heptameric Direct Repeats for DNA Binding by Streptomyces Antibiotic Regulatory Protein-Large ATP-Binding Regulator of the LuxR Family (SARP-LAL) Regulators in Streptomyces natalensis. Barreales EG; Vicente CM; de Pedro A; Santos-Aberturas J; Aparicio JF Appl Environ Microbiol; 2018 May; 84(10):. PubMed ID: 29500267 [TBL] [Abstract][Full Text] [Related]
5. Pathway-specific regulation revisited: cross-regulation of multiple disparate gene clusters by PAS-LuxR transcriptional regulators. Vicente CM; Payero TD; Santos-Aberturas J; Barreales EG; de Pedro A; Aparicio JF Appl Microbiol Biotechnol; 2015 Jun; 99(12):5123-35. PubMed ID: 25715784 [TBL] [Abstract][Full Text] [Related]
6. Interspecies Complementation of the LuxR Family Pathway-Specific Regulator Involved in Macrolide Biosynthesis. Mo S; Yoon YJ J Microbiol Biotechnol; 2016 Jan; 26(1):66-71. PubMed ID: 26608164 [TBL] [Abstract][Full Text] [Related]
8. Pleiotropic regulation of daptomycin synthesis by DptR1, a LuxR family transcriptional regulator. Yu G; Hui M; Li R; Zhang S World J Microbiol Biotechnol; 2020 Aug; 36(9):135. PubMed ID: 32778952 [TBL] [Abstract][Full Text] [Related]
9. Characterization of a pathway-specific activator of milbemycin biosynthesis and improved milbemycin production by its overexpression in Streptomyces bingchenggensis. Zhang Y; He H; Liu H; Wang H; Wang X; Xiang W Microb Cell Fact; 2016 Sep; 15(1):152. PubMed ID: 27604457 [TBL] [Abstract][Full Text] [Related]
10. Identification of Middle Chain Fatty Acyl-CoA Ligase Responsible for the Biosynthesis of 2-Alkylmalonyl-CoAs for Polyketide Extender Unit. Miyazawa T; Takahashi S; Kawata A; Panthee S; Hayashi T; Shimizu T; Nogawa T; Osada H J Biol Chem; 2015 Nov; 290(45):26994-27011. PubMed ID: 26378232 [TBL] [Abstract][Full Text] [Related]
11. Waking up Streptomyces secondary metabolism by constitutive expression of activators or genetic disruption of repressors. Aigle B; Corre C Methods Enzymol; 2012; 517():343-66. PubMed ID: 23084947 [TBL] [Abstract][Full Text] [Related]
12. Exploring novel herbicidin analogues by transcriptional regulator overexpression and MS/MS molecular networking. Shi Y; Gu R; Li Y; Wang X; Ren W; Li X; Wang L; Xie Y; Hong B Microb Cell Fact; 2019 Oct; 18(1):175. PubMed ID: 31615513 [TBL] [Abstract][Full Text] [Related]
13. The Serratia LuxR family regulator CarR 39006 activates transcription independently of cognate quorum sensing signals. Poulter S; Carlton TM; Spring DR; Salmond GP Mol Microbiol; 2011 May; 80(4):1120-31. PubMed ID: 21435033 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional regulation of mithramycin biosynthesis in Streptomyces argillaceus: dual role as activator and repressor of the PadR-like regulator MtrY. Flórez AB; Álvarez S; Zabala D; Braña AF; Salas JA; Méndez C Microbiology (Reading); 2015 Feb; 161(Pt 2):272-284. PubMed ID: 25416691 [TBL] [Abstract][Full Text] [Related]
15. Creation of novel reveromycin derivatives by alcohol-added fermentation. Nogawa T; Takahashi S; Sekiyama Y; Takagi H; Uramoto M; Koshino H; Kawatani M; Shimizu T; Osada H J Antibiot (Tokyo); 2013 Apr; 66(4):247-50. PubMed ID: 23232929 [No Abstract] [Full Text] [Related]
16. Evolution of LuxR solos in bacterial communication: receptors and signals. Xu G Biotechnol Lett; 2020 Feb; 42(2):181-186. PubMed ID: 31732826 [TBL] [Abstract][Full Text] [Related]
17. Stenotrophomonas maltophilia responds to exogenous AHL signals through the LuxR solo SmoR (Smlt1839). Martínez P; Huedo P; Martinez-Servat S; Planell R; Ferrer-Navarro M; Daura X; Yero D; Gibert I Front Cell Infect Microbiol; 2015; 5():41. PubMed ID: 26029670 [TBL] [Abstract][Full Text] [Related]
18. Regulation of coronafacoyl phytotoxin production by the PAS-LuxR family regulator CfaR in the common scab pathogen Streptomyces scabies. Cheng Z; Bown L; Tahlan K; Bignell DR PLoS One; 2015; 10(3):e0122450. PubMed ID: 25826255 [TBL] [Abstract][Full Text] [Related]
19. Regulation of aureofuscin production by the PAS-LuxR family regulator AurJ3M. Yang J; Xu D; Yu W; Hao R; Wei J Enzyme Microb Technol; 2020 Jun; 137():109532. PubMed ID: 32423669 [TBL] [Abstract][Full Text] [Related]
20. Transposon-based identification of a negative regulator for the antibiotic hyper-production in Streptomyces. Luo S; Chen XA; Mao XM; Li YQ Appl Microbiol Biotechnol; 2018 Aug; 102(15):6581-6592. PubMed ID: 29876602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]