BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32576969)

  • 1. From extraocular photoreception to pigment movement regulation: a new control mechanism of the lanternshark luminescence.
    Duchatelet L; Sugihara T; Delroisse J; Koyanagi M; Rezsohazy R; Terakita A; Mallefet J
    Sci Rep; 2020 Jun; 10(1):10195. PubMed ID: 32576969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GABA inhibition of luminescence from lantern shark (Etmopterus spinax) photophores.
    Claes JM; Krönström J; Holmgren S; Mallefet J
    Comp Biochem Physiol C Toxicol Pharmacol; 2011 Mar; 153(2):231-6. PubMed ID: 21070868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioluminescence in lanternsharks: Insight from hormone receptor localization.
    Duchatelet L; Delroisse J; Mallefet J
    Gen Comp Endocrinol; 2020 Aug; 294():113488. PubMed ID: 32272132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hormonal control of luminescence from lantern shark (Etmopterus spinax) photophores.
    Claes JM; Mallefet J
    J Exp Biol; 2009 Nov; 212(Pt 22):3684-92. PubMed ID: 19880730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adrenocorticotropic Hormone and Cyclic Adenosine Monophosphate are Involved in the Control of Shark Bioluminescence.
    Duchatelet L; Delroisse J; Pinte N; Sato K; Ho HC; Mallefet J
    Photochem Photobiol; 2020 Jan; 96(1):37-45. PubMed ID: 31441051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of luminescence from pygmy shark (Squaliolus aliae) photophores.
    Claes JM; Ho HC; Mallefet J
    J Exp Biol; 2012 May; 215(Pt 10):1691-9. PubMed ID: 22539736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo transcriptome analyses provide insights into opsin-based photoreception in the lanternshark Etmopterus spinax.
    Delroisse J; Duchatelet L; Flammang P; Mallefet J
    PLoS One; 2018; 13(12):e0209767. PubMed ID: 30596723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Etmopterus spinax, the velvet belly lanternshark, does not use bacterial luminescence.
    Duchatelet L; Delroisse J; Flammang P; Mahillon J; Mallefet J
    Acta Histochem; 2019 May; 121(4):516-521. PubMed ID: 31027729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional physiology of lantern shark (Etmopterus spinax) luminescent pattern: differential hormonal regulation of luminous zones.
    Claes JM; Mallefet J
    J Exp Biol; 2010 Jun; 213(11):1852-8. PubMed ID: 20472772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of luminescence from lantern shark (Etmopterus spinax) photophores.
    Claes JM; Mallefet J
    Commun Integr Biol; 2011 May; 4(3):251-3. PubMed ID: 21980552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide in the control of luminescence from lantern shark (Etmopterus spinax) photophores.
    Claes JM; Krönström J; Holmgren S; Mallefet J
    J Exp Biol; 2010 Sep; 213(Pt 17):3005-11. PubMed ID: 20709929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ontogeny of photophore pattern in the velvet belly lantern shark, Etmopterus spinax.
    Claes JM; Mallefet J
    Zoology (Jena); 2009; 112(6):433-41. PubMed ID: 19674879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The lantern shark's light switch: turning shallow water crypsis into midwater camouflage.
    Claes JM; Mallefet J
    Biol Lett; 2010 Oct; 6(5):685-7. PubMed ID: 20410033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melanopsin photoreception in the eye regulates light-induced skin colour changes through the production of α-MSH in the pituitary gland.
    Bertolesi GE; Hehr CL; McFarlane S
    Pigment Cell Melanoma Res; 2015 Sep; 28(5):559-71. PubMed ID: 26095528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deepwater fish with 'lightsabers'--dorsal spine-associated luminescence in a counterilluminating lanternshark.
    Claes JM; Dean MN; Nilsson DE; Hart NS; Mallefet J
    Sci Rep; 2013; 3():1308. PubMed ID: 23425862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The regulation of skin pigmentation in response to environmental light by pineal Type II opsins and skin melanophore melatonin receptors.
    Bertolesi GE; Atkinson-Leadbeater K; Mackey EM; Song YN; Heyne B; McFarlane S
    J Photochem Photobiol B; 2020 Nov; 212():112024. PubMed ID: 32957069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human nonvisual opsin 3 regulates pigmentation of epidermal melanocytes through functional interaction with melanocortin 1 receptor.
    Ozdeslik RN; Olinski LE; Trieu MM; Oprian DD; Oancea E
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11508-11517. PubMed ID: 31097585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In the intimacy of the darkness: Genetic polyandry in deep-sea luminescent lanternsharks Etmopterus spinax and Etmopterus molleri (Squaliformes, Etmopteridae).
    Duchatelet L; Oury N; Mallefet J; Magalon H
    J Fish Biol; 2020 Jun; 96(6):1523-1529. PubMed ID: 32246461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two light-activated neuroendocrine circuits arising in the eye trigger physiological and morphological pigmentation.
    Bertolesi GE; Hehr CL; Munn H; McFarlane S
    Pigment Cell Melanoma Res; 2016 Nov; 29(6):688-701. PubMed ID: 27557040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dephosphorylation/inactivation of tyrosine hydroxylase at the median eminence of the hypothalamus is required for suckling-induced prolactin and adrenocorticotrop hormone responses.
    Fehér P; Oláh M; Bodnár I; Hechtl D; Bácskay I; Juhász B; Nagy GM; Vecsernyés M
    Brain Res Bull; 2010 Apr; 82(1-2):141-5. PubMed ID: 20170714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.