BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 3257732)

  • 21. Interaction of IGF-I and 1 alpha, 25(OH)2D3 on receptor expression and growth stimulation in rat growth plate chondrocytes.
    Klaus G; Weber L; Rodríguez J; Fernández P; Klein T; Grulich-Henn J; Hügel U; Ritz E; Mehls P
    Kidney Int; 1998 May; 53(5):1152-61. PubMed ID: 9573529
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of polyamines in expression of the differentiated phenotype of chondrocytes in culture.
    Takano T; Takigawa M; Suzuki F
    Med Biol; 1981 Dec; 59(5-6):423-7. PubMed ID: 6175859
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct effects of 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 on growth zone and resting zone chondrocyte membrane alkaline phosphatase and phospholipase-A2 specific activities.
    Schwartz Z; Schlader DL; Swain LD; Boyan BD
    Endocrinology; 1988 Dec; 123(6):2878-84. PubMed ID: 3264240
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of 1,24R-dihydroxyvitamin D3 on the growth of human keratinocytes.
    Matsumoto K; Hashimoto K; Kiyoki M; Yamamoto M; Yoshikawa K
    J Dermatol; 1990 Feb; 17(2):97-103. PubMed ID: 2158504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 1,25(OH)2D3 and dihydrotestosterone interact to regulate proliferation and differentiation of epiphyseal chondrocytes.
    Krohn K; Haffner D; Hügel U; Himmele R; Klaus G; Mehls O; Schaefer F
    Calcif Tissue Int; 2003 Oct; 73(4):400-10. PubMed ID: 12874696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid structural analogues of 1,25-(OH)2D3 regulate chondrocyte proliferation and proteoglycan production as well as protein kinase C through a nongenomic pathway.
    Boyan BD; Posner GH; Greising DM; White MC; Sylvia VL; Dean DD; Schwartz Z
    J Cell Biochem; 1997 Sep; 66(4):457-70. PubMed ID: 9282324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Maturation-dependent regulation of protein kinase C activity by vitamin D3 metabolites in chondrocyte cultures.
    Sylvia VL; Schwartz Z; Schuman L; Morgan RT; Mackey S; Gomez R; Boyan BD
    J Cell Physiol; 1993 Nov; 157(2):271-8. PubMed ID: 8227160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stimulation of alkaline phosphatase activity by ascorbic acid and suppression by 1,25-dihydroxycholecalciferol in rabbit craniofacial chondrocytes in culture.
    Kyung HM; Takano-Yamamoto T; Soma S; Sakuda M
    J Osaka Univ Dent Sch; 1992 Dec; 32():60-7. PubMed ID: 1341712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 24R,25-dihydroxyvitamin D stimulates creatine kinase BB activity in chick cartilage cells in culture.
    Sömjen D; Kaye AM; Binderman I
    FEBS Lett; 1984 Feb; 167(2):281-4. PubMed ID: 6607849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of various growth and differentiation factors on expression of parathyroid hormone receptors on rabbit costal chondrocytes in culture.
    Takigawa M; Kinoshita A; Enomoto M; Asada A; Suzuki F
    Endocrinology; 1991 Aug; 129(2):868-76. PubMed ID: 1649749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of 1,25-(OH)2D3- and 24,25-(OH)2D3-dependent stimulation of alkaline phosphatase activity by A23187 suggests a role for calcium in the mechanism of vitamin D regulation of chondrocyte cultures.
    Schwartz Z; Langston GG; Swain LD; Boyan BD
    J Bone Miner Res; 1991 Jul; 6(7):709-18. PubMed ID: 1659121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of 1,25(OH)2D3 and 24,25(OH)2D3 on calcium ion fluxes in costochondral chondrocyte cultures.
    Langston GG; Swain LD; Schwartz Z; Del Toro F; Gomez R; Boyan BD
    Calcif Tissue Int; 1990 Oct; 47(4):230-6. PubMed ID: 2242495
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 1,25-Dihydroxyvitamin D3 and human bone-derived cells in vitro: effects on alkaline phosphatase, type I collagen and proliferation.
    Beresford JN; Gallagher JA; Russell RG
    Endocrinology; 1986 Oct; 119(4):1776-85. PubMed ID: 3489608
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro action of 1,25-dihydroxycholecalciferol and 24,25-dihydroxycholecalciferol on matrix organization and mineral distribution in rabbit growth plate.
    Plachot JJ; Du Bois MB; Halpern S; Cournot-Witmer G; Garabedian M; Balsan S
    Metab Bone Dis Relat Res; 1982; 4(2):135-42. PubMed ID: 6983024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction between 24R,25-dihydroxycholecalciferol and 1,25-dihydroxycholecalciferol on 45Ca release from bone in vitro.
    Mahgoub A
    Calcif Tissue Int; 1981; 33(6):663-6. PubMed ID: 6799176
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Normal egg hatchability requires the simultaneous administration to the hen of 1 alpha,25-dihydroxycholecalciferol and 24R,25-dihydroxycholecalciferol.
    Norman AW; Leathers V; Bishop JE
    J Nutr; 1983 Dec; 113(12):2505-15. PubMed ID: 6606700
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vitamin D metabolite effects on membrane potential and potassium intracellular activity in rabbit cartilage.
    Edelman A; Thil CL; Garabedian M; Plachot JJ; Guillozo H; Fritsch J; Thomas SR; Balsan S
    Miner Electrolyte Metab; 1985; 11(2):97-105. PubMed ID: 3872992
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vitamin D metabolites regulate osteocalcin synthesis and proliferation of human bone cells in vitro.
    Skjødt H; Gallagher JA; Beresford JN; Couch M; Poser JW; Russell RG
    J Endocrinol; 1985 Jun; 105(3):391-6. PubMed ID: 3873510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of and response to 1,25 dihydroxycholecalciferol by subpopulations of murine epidermal keratinocytes: existence of a paracrine system for 1,25 dihydroxycholecalciferol.
    Rizk-Rabin M; Zineb R; Zhor B; Michèle G; Jana P
    J Cell Physiol; 1994 Apr; 159(1):131-41. PubMed ID: 8138581
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of the effects of hydrostatic compressive force on glycosaminoglycan synthesis and proliferation in rabbit chondrocytes from mandibular condylar cartilage, nasal septum, and spheno-occipital synchondrosis in vitro.
    Takano-Yamamoto T; Soma S; Nakagawa K; Kobayashi Y; Kawakami M; Sakuda M
    Am J Orthod Dentofacial Orthop; 1991 May; 99(5):448-55. PubMed ID: 2028934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.